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Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Refinement calculus for a simple certification of static polyhedral analysis
with code transformations

Sylvain Boulmé, Michaël Périn
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Abstract

A static analyzer such as ASTRÉE [CCF+05, BCC+10] is able to ensure safety of critical software,
i.e. the absence of runtime overflows. But ASTRÉE is itself a very complex software and its full
formal verification seems currently impossible. A more feasible alternative might be to make the
analyzer produce a formally verifiable certificate. Such a certificate would summarize the proof of
safety found by the analyzer.

As a preliminary step to address this challenge, we experiment in COQ with the design of a tiny lan-
guage of certificates, called “SCAT”1. We believe that instrumented analyzers could produce SCAT
certificates when analysis is successful. Roughly, a SCAT certificate annotates the source with loop
invariants that are hard to re-infer and also with code transformations used during the analysis. These
code transformations come typically from trace-partitioning (loop unrolling, etc) [MR05] and lin-
earization of arithmetic expressions [Min06].

Hence, this paper presents the SCAT language and an automatic checker of SCAT certificates which
is formally verified in COQ [The12]. Our main COQ theorem ensures that if the SCAT certificate is
accepted by the checker then the original source is safe.
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1 Introduction
This paper explores how to formally and automatically verify the safety of source programs by certifying in COQ
the results of a static analyzer. Such a source is said to be safe if and only if none of its executions raises a memory
or arithmetic overflow. Whereas our current tool only applies to a toy imperative language involving only integer
computations, our long-term goal is to support COMPCERT sources. COMPCERT is an optimizing C-compiler
which is formally verified in COQ [Ler09]. More precisely, it is proved to produce an executable that behaves
as authorized by the semantics of the source program only if this latter is safe. Hence, certifying the safety of
a COMPCERT source program will ensure that it is correctly compiled (and that the resulting executable is also
safe).

Related work. The principle of a posteriori verifying the results of a static analyzer consists in instrumenting
an analyzer in order to produce a certificate that proves the validity of the discovered properties in all possible
executions of the program under analysis. A posteriori certification of static analyzers has been studied with the
motivation of Proof-Carrying Code [SYY03, Cha06, GS07, BJP06, BJPT10] or in order to free the user from
specifying full contracts in Hoare logic [MM10]. In these propositions except [BJP06, BJPT10], the certificate
checker generates Verification Conditions (VC) in a logic more expressive than the abstract domains of the ana-
lyzer. Typically, the certificate is the original source annotated with assertions discovered during analysis. The
certificate is checked using a Hoare logic based on a general theorem prover. However, in order to plug our verifier
on COMPCERT, we aim to have a fully automated certification process which is itself formally verified. Gener-
ating VCs in an expressive logic seems currently incompatible with this goal. In our proposal, like in [BJPT10],
all VCs are implications in the abstract domain of convex polyhedra introduced in [CH78]. Hence, they might be
automatically discharged using the COQ certified implementation of polyhedral inclusion introduced in [BJPT10].

Contributions. Building on [BJPT10], we address the certification of analyzers performing program transfor-
mations such as trace partitioning and linearization whose soundness itself depends on properties found during
analysis. Indeed, these transformations overcome two main limitations of the convex polyhedra domain: the loss
of precision due to the approximation of disjunctions and the treatment of expressions which have no best abstrac-
tion. We formalize these transformations using refinement calculus[BvW99] because this framework is simple to
formalize in COQ. Moreover, although we leave the issue of certificate generation for further work, we also take
care to design a language allowing small and fast-checking certificates. Hence, this paper introduces our language
of certificates, called SCAT, and the COQ certified SCAT-CHECKER.

A running example. We consider source programs like the one of figure 1 that contain two kinds of assertions:
• Assertion “dce” means that the condition c is required by execution: if c does not hold then dce raises a

runtime error. Typically, this corresponds to the precondition of an array access that requires the index to
belong to the static bounds of the array. Arithmetic expressions in our simple semantics are pure and total: if
necessary, division by zero and arithmetic overflows must be explicitly avoided through a preceding require
assertion.

• Assertion “bcc” is a guard: if c does not hold then execution is safely blocked. Otherwise, the condition c
is ensured and can be used as a hypothesis.

The program of figure 1 illustrates that the join operator (i.e. the least upper bound) of convex abstract domains
may be too imprecise to discharge certain safety requirements. Indeed, the join of interval abstractions from the
“then-branch” and from the “else-branch” on line 5 is 1 ≤ x, y ≤ 10 which does not suffice to prove requirement
of line 7. In order to discharge this requirement, this join must be delayed after line 6 where both branches entail
6 ≤ r ≤ 50. Delaying join according to heuristics is a particular case of trace partitioning [MR05].

The delay of a join after an “if-then-else” must appear in SCAT certificates as an explicit program transfor-
mation noted by //. brackets. Roughly, a certificate p of the form “ / if c then p1 else p2 fi ; p3 . ” has two
interpretations:

C(p) = “if c then C(p1) else C(p2) fi ; C(p3)”
A(p) = “if c then A(p1) ; A(p3) else A(p2) ; A(p3) fi”

The concrete program C(p) gives back the source code whereas the abstract program A(p) is the code that must
be checked by a polyhedral analysis. Hence, the transformation //. forces here the analyzer to delay the join after
p3.
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1 b1≤ x≤ 10c ;
2 i f x≤ 5
3 then y←x+5 (* 1≤ x≤ 5 ; 6≤ y≤ 10 *)
4 e l s e y←x-5 (* 6≤ x≤ 10 ; 1≤ y≤ 5 *)
5 f i ; (* 1≤ x,y≤ 10 *)
6 r←x*y ;
7 d6≤ r≤ 50e ;
8 r←r+x+y ;
9 d13≤ r≤ 65e

Annotations inside “ (∗ . . . ∗ )” typically result from a
naive interval analysis, where “ f i ” is analyzed as a join of
intervals. The postcondition on line 5 authorizes the unreach-
able state x=7 and y=8. Hence, because 7×8=56>50, the re-
quirement of line 7 can not be proved. This unreachable state
is also authorized using any other convex overapproximation
(octagons, polyhedra, polynomial inequalities, etc). Indeed,
it belongs to the convex-hull of the strongest-postconditions
of branch “then” and branch “else”: this convex-hull is com-
puted at figure 4.

Figure 1: Two arithmetic computations after an “if-then-else”

Figure 2 gives an overview of our SCAT-CHECKER. We assume an analyzer instrumented to return SCAT
certificates. Given a certificate p, the checker extracts C(p) (which is checked against the expected source) and
A(p). By construction, C(p) refines A(p). This means that “if A(p) is safe then any behavior of C(p) is a
behavior of A(p)”: in particular, if A(p) is safe, then so is C(p). Indeed, p is syntactically built from operators
preserving refinement (like //.) which are themselves certified once and for all in COQ. Last, the absence of
unsafe behavior is proved on A(p) which generates only VCs that are discharged using the certified polyhedral
inclusion of [BJPT10]. �� ��p : SCAT certificate

�� ��p : source code

�� ��A(p)

VERIFICATION
CONDITION
GENERATOR

the SCAT-CHECKER

�
�
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Figure 2: Architecture of the SCAT-CHECKER

Overview of the paper. Section 2 briefly introduces our vision of abstract interpretation. Section 3 is a short
tutorial to our SCAT certificate language, based on examples. Section 4 gives a ”paper” formalization of SCAT.
Section 5 explains how this formalization is implemented in COQ. Section 6 concludes and opens on perspec-
tives.
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2 Our vision of polyhedral analysis with trace partitioning
This section presents only the concepts of abstract interpretation that are relevant for the remainder of the paper.
For example, as our checker does not infer loop invariants, but performs only a kind of postfixpoint verification,
we do not introduce widenings and narrowings that make abstract interpreters so smart. Our first objective here
is to present the main design choices leading to SCAT. Moreover, this section introduces examples for which
SCAT certificates are given at section 3. At last, it also introduces the technical notations about polyhedra domain
that are used in the formalization of section 4. Hence, it presents a reformulation of some basic notions of
abstract interpretation, which are both adapted to COQ logic (not founded on set-theory, but on type-theory), and
“simplified” according to our needs.

2.1 Preliminary notations.
• We use an ambient higher-order meta-logic very close to the one of COQ. We note Prop the type of

(meta)propositions. We also assume a type FSet(A) to represent finite subsets of type A. Similarly, we
assume a type FMap(A,B) to represent finite maps from A to B. We use notations of set-theory to handle
elements of these two types.

• We note X the countable type of programming variables; we use x, x1 : X. We note V the type of values.
In our toy language, we simply take V , Z. We use v, v1 : V.

• We note S , X→ V the type of memory states: it is the type of total functions modulo extensionality from
variables into values. We use s, s1 : S. Hence, implicitly, every variable is initially assigned to an arbitrary
value. Our notion of safety means that the program can not have wrong behavior for any initial state.

• Given f : FMap(X,V), we note “s⊕ f” the operation that returns a copy of state s where the old values
associated to dom f have been replaced by their image by f .

s⊕ f , λx.if x ∈ dom(f) then f(x) else s(x)
We note {x 7→ v} the singleton map associating x to value v. And, we write “{x1 7→ v1 | . . . |xn 7→ vn | 7→ v}”
as a shortcut for “λ .v ⊕ {xn 7→ vn} ⊕ . . . ⊕ {x1 7→ v1}”. We use these notations for any type X with a
decidable equality dec

= .

• We note C the type of logical conditions. They are quantifier-free first-order formula used as boolean
expressions of programs. Their definition is precised in section 4.1. We use c,... : C. Below, we note
J.K : C → S → Prop the semantics of conditions, and we note |.| : C → FSet(X) the frame function
returning the set of variables that are syntactically constrained by a condition. They satisfy2

x 6∈ |c| ⇒ JcK(s) = JcK(s⊕ {x 7→ v})

2.2 The abstract domain of convex polyhedra.
We focus on the case where abstract states – over-approximating the reachable memory states – are represented
by polyhedra. Hence, the type S] of abstract states is the type of convex polyhedra.

Definition 1 (convex polyhedron). A convex polyhedron φ : S] is a finite conjunction of affine inequalities of the
form “v1.x1 + . . .+ vn.xn ≤ v”.

Basically, computations on S] allow to approximate logical reasonings on formula of type C. As explain later
in the paper, they are employed to overapproximate strongest-postconditions of programs. Hence, along the paper,
we coerce implicitly S] into C. The semantics JφK(s) of a polyhedron φ is the conjunction of the semantics of φ
inequalities. Similarly, its frame |φ| is included in the union of the frames of its inequalities.

JΣni=1vi.xi ≤ vK(s) = Σni=1vi.s(xi) ≤ v |Σni=1vi.xi ≤ v| ⊆ {x1, . . . , xn}

Actually, in abstract interpretation, the semantics J.K : S] → S → Prop is traditionally called concretization of
S], and is rather noted γ. Hence, we use γ instead of J.K when applying to S].

The geometric nature of polyhedra makes them a powerful data-structure with efficient algorithms from linear
programming. In this paper, we do not use a particular implementation of S]. Instead, we only use the basic

2As usual, all our formula are implicitly universally quantified.
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operators specified below. However, often, our safety theorem requires only a weak version of the specification
(whereas the stronger version is only needed for the precision of the result). These weak specifications of operators
are formalized on figure 3: given a particular implementation of S], they must be proved in COQ. But, these weak
specifications allow result certification of most operators below (see [BJPT10]). Hence, their core implementation
(which may use a complex procedure based on Simplex algorithm) is not directly proved in COQ. Instead, they
generate a witness that their result is correct. And, only the witness checker is proved in COQ. When the witness
checker fails, a default result satisfying the weak specification can be returned. Here, these witnesses may typically
exploit Farkas lemma in order to reduce witness checking to matrix multiplications (see [BJPT10]).

The basic operators on S] used by our VCG are the following:

• the decidable inclusion relationv: S]×C→ bool 3 such that φ1 v φ2 is exactly equivalent to γ(φ1)(s)⇒
γ(φ2)(s). But, φ v c may return false, if our abstract domain does not to deal with condition c.

• the empty polyhedron ⊥ (e.g. 0 ≤ −1) and the full polyhedron > (e.g. 0 ≤ 1).

• the join operator t : S] × S] → S]. Actually, φ1 t φ2 is the smallest polyhedron containing φ1 and φ2, or
in other words, their convex-hull (see example of figure 4). But this property is not needed for safety.

• a guard operator u : S] × C → S] such that polyhedron φ u c abstracts condition c in the context of φ.
In the particular case where c is in S], then φ u c is exactly the intersection of c and φ (which remains a
polyhedron). Otherwise, c may be simply ignored: in this case, φu c is equivalent to φ. Let us remark here,
that, if c is not a polyhedron, then φ v c may be implemented as “(φ u ¬c) v ⊥” (hence, it gives a exact
answer when ¬c is a polyhedron).

• a renaming operator .[.] : S] × FMap(X,X)→ S] such that if σ is an involution 4, then φ[σ] is the result
of applying this permutation to φ.

• a projection operator . \ . : S] × FSet(X) → S] such that φ\χ is a simplified version of φ using the fact
that variables χ are useless. Actually, φ\χ may be the projection of φ on |φ| \χ, but may also be not. This
operator is only used in order to reduce the size of polyhedra when possible. But, eliminating some variables
may also lead to a growth of the resulting polyhedron. Moreover, from the VCG point of view, invoking
φ\χ in unappropriate circumstances will only result in a loss of precision, not in a loss of safety.

A polyhedral analyzer over-approximates the strongest-postcondition of programs using computations on S].
Typically, strongest-postcondition of assignment are approximated by combining a renaming of variables, a guard
and a projection. The strongest-postcondition of if-then-else is approximated using convex-hull t. See example
of figure 4. These ideas are formalized in section 4.2.

2.3 Abstraction of non-polyhedral conditions
A non-polyhedral condition c may be abstracted according to the current postcondition φ by a smart implementa-
tion of the guard operator φuc. However, delegating to the guard operator all the job to find sufficient abstractions
of non-polyhedral conditions is clearly not a complete approach. For instance, if c is “x × x + y × y ≤ 100”
(e.g. it corresponds geometrically to a disk), then it has no best abstraction as a polyhedron: given any polyhedron
φ containing c, there is a polyhedron φ′ containing c and strictly contained in φ (otherwise quadrature of circle
would be possible). In practice, analyzers employ complex heuristics to find good abstractions which may con-
sider the remaining code depending on c. They may also apply some symbolic transformation of the code before
linearization techniques [Min06].

In this last approach, linearization consists in approximating non-linear code by interval affine forms that are
kind of affine expressions where “scalars” are generalized into “intervals of scalar”. Typically, a multiplication
between two linear terms “t1 × t2” is linearized by approximating one of the two terms t1 or t2 as an interval of
scalars. The choice between t1 and t2 itself relies on several strategies: one of them could be “try both choices
and select the one that gives the most precise result”. See figure 5.

In conclusion, it seems interesting to get hints from the analyzer in order to avoid to replay the search of
good abstractions during the verification of certificates. The instrumented analyzer may generate a SCAT certifi-
cate according to flexible strategies: either implicitly use the “default abstraction strategy” implemented in u, or

3In all this paper, booleans of bool are implicitly coerced as propositions of Prop. However, bool indicates that the underlying
proposition is decidable.

4We say “σ : FMap(X,X) is an involution” iff dom(σ) ⊆ image(σ) and σ ◦ σ = iddom(σ)
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φ v c ∧ γ(φ)(s)⇒ JcK(s) ¬γ(⊥)(s) γ(>)(s) |⊥| = |>| = ∅

γ(φ1)(s) ∨ γ(φ2)(s)⇒ γ(φ1 t φ2)(s) |φ1 t φ2| ⊆ |φ1| ∪ |φ2| γ(φ)(s) ∧ JcK(s)⇒ γ(φ u c)(s)

γ(φ1 u φ2)(s)⇒ γ(φ1)(s) ∧ γ(φ2)(s) |φ u c)| ⊆ |φ| ∪ |c| γ(φ)(s)⇒ γ(φ\χ)(s)
∣∣φ\χ∣∣ ⊆ |φ|

σ involution ∧ γ(φ)(s⊕ (s ◦ σ))⇒ γ(φ[σ])(s) |φ[σ]| ⊆ (|φ| \dom(σ)) ∪ σ[|φ| ∩ dom(σ)]

Figure 3: Properties of S] required for safety checking

On figure 1, postcondition of line 5 is approximated by⊔ 1 ≤ x ≤ 5 ∧ y = x+ 5 (post of then)
6 ≤ x ≤ 10 ∧ y = x− 5 (post of else)

This convex-hull (pictured on the right) results in

−5 ≤ x− y ≤ 5 ∧ 7 ≤ x+ y ≤ 15

Whereas each points of initial segments satisfy x × y ≤ 50, the
points of their convex-hull only satisfy x× y ≤ 56.25

x

y

then

else

Figure 4: Abstract postcondition of if-statement in source of figure 1

b1≤ x≤ 5 ∧ 1≤ y≤ 3 ∧ 1≤ z≤ 3c ;
r←y*x+z*(-x)+z*5 ;
d1≤ r≤ 27e

Here, intervalizing z leads to reject the program (proves only
−9 ≤ r ≤ 29). But, “homogeneity strategy” [Min06] is suc-
cessful by intervalizing x. Indeed, this strategy intervalizes the
smallest set of variables that makes the expression homogeneous
(such that arguments of + and − operators have the same de-
gree).

Figure 5: Example of a non-linear assignment

explicitly specify a transformation on the original code before to apply the default strategy. This transformation
may be compositionally built from elementary ones, themselves proved once for all in a COQ library or with an
automatically generated COQ proof, in parallel of the certificate.

2.4 Trace partitioning

Trace partitioning [MR05] is a technique to associate a disjunction of abstract postconditions to a given point of
control. Hence, it allows to compensate the lack of precise disjunction in convex abstract domains. However, this
increased precision comes at the price of analyzing the same piece of code several times in different contexts of
execution.

For example, on the source of figure 1, performing the convex-hull at line 5 forbids to prove the safety of
line 7 (because it would authorize unreachable state x=7 and y=8, as illustrated by figure 4). Hence, a polyhedral
analyzer must linearize line 6 for each branch of if-then-else: it attaches two postconditions on line 6. Assuming
that the analyzer decides to approximate y in both cases (it may however apply a different strategy in each branch),
we get those on figure 6. However, systematically avoiding convex-hulls leads to an exponential blow-up. If the
analyzer performs one just after line 6, it gets a sufficient condition to discharge requirements of line 7 and line 9.

Figure 7 gives a slightly more complex example where a control-point is associated to 4 postconditions. This
last example also illustrates that loops often need to be unrolled at least once (see figure 7). Hence, partial or full
loop unrolling is another frequent case of trace partitioning. For instance, Mauborgne and Rival [MR05] identifies
some patterns like “linear interpolation” which are often used in embedded software, and that are efficiently
analyzed by a full unrolling of loops.
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• Post of line 6 after branch “then”
1 ≤ x ≤ 5 ∧ y = x+ 5 ∧ 6x ≤ r ≤ 10x

• Post of line 6 after branch “else”
6 ≤ x ≤ 10 ∧ y = x− 5 ∧ x ≤ r ≤ 5x

Their convex-hull
− 5 ≤ x− y ≤ 5 ∧ 7 ≤ x+ y ≤ 15
∧ x+ y + 5 ≤ 2r ≤ 5(x+ y) + 25
∧ x+ 5y − 25 ≤ r ≤ 7x+ 3y − 15

Figure 6: Two postconditions for line 6 of figure 1 with their convex hull

1 bx≤ 10c ;
2 i f x≤ 5
3 then y←x+5
4 e l s e y←x-5
5 f i ;
6 i←0 ; r←0 ;
7 whi le i≤ x-1 do
8 i←i+1 ; r←r+y
9 done ;

10 d0≤ r≤ 50e

We consider a variant of figure 1 where multiplication is computed in a loop and x
has an infinite lower bound. Here also, the required precision obliges to approximate
multiplication on variable r independently in each branch of the if-then-else. Hence,
the concrete loop invariant “r = y.i” is abstracted as “r ≤ 10.i” in the first branch,
and “r ≤ 5.i” in the second one.
Moreover, we need to unroll the loop once, in order to express the following reason-
ing: “If the body of the loop has been run at least once, then at the end of the loop
i=x. Otherwise, the required property holds because r=0.”
Hence, line 9 is associated to 4 postconditions. Their convex-hull is sufficient to
prove the required property.

Figure 7: Partitioning of loop invariant & unrolling

At last, another case of trace partitioning in [MR05] replaces complex linearization strategies by a simple
exhaustive (but costly) test. On source of figure 5, as “x” is an integer known to be between 1 and 5, the analyzer
may compute the postcondition on r as the convex-hull of the five cases corresponding to replace x by a value
between 1 and 5. Hence, it is able to prove the very precise postcondition “5 ≤ r ≤ 15”.

Actually, on this source, a smarter analysis than the two previous ones first factorizes x (in order to avoid twice
independant intervalizations on x): “y × x+ z × (−x) + z × 5” is rewritten “(y − z)× x+ z × 5”. Then, trace
partitioning is used on two cases y − z ≥ 0 and y − z < 0 : this allows to keep precision while intervalizing on
x. Hence, we get y + 4.z ≤ r ≤ 5.y for first branch, and 5.y ≤ r ≤ y + 4.z for second branch. The convex-hull
of this two branches implies “5 ≤ r ≤ 15”. As we see, such an analysis is able to discover that r is a barycentre
of 5.y and 5.z.

In [MR05], trace partitioning is formalized as the abstract domain of mappings from finite partitions of traces5

to postconditions. During the analysis, splitting or merging partitions is dynamically guided by heuristics, ac-
cording to the informations already discovered by the analyzer. For instance on figure 7, the analysis starts with
a singleton partition. It is split in two partitions at line 2. Each one is then split at line 7, and all 4 are merged at
line 9. Line 10 is analyzed with a singleton partition.

Hence, at the end of the analysis, we assume that the analyzer is able to annotate the source program with
the chosen partitions and their scope, using split/merge blocks. SCAT syntax provides a family of operators
“/v≤`≤v′ p .” where p is a piece of certificate which precise syntax and semantics are specific to each operator
of the family. Here ` is a “ghost constant” called a partition label and bound in p. Its value is an integer of the
range v . . . v′ that represents exactly one branch of the partition. Hence, such a statement corresponds to split the
analysis of p in max(v′−v+1, 0) sub-branches. The abstract program A(p) can be adapted for each branch by
case analysis on ` value. However, C(p) must not depend on this value, otherwise the certificate is rejected by the
VCG.

5A trace is the sequence of full states (i.e. memory & control) in a given execution of the small-step semantics.
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3 Examples of SCAT certificates

This section presents SCAT certificates for the analysis described on previous examples. In these examples, we
assume that the guard operator u does not well find good abstractions of non-polyhedral conditions. Hence,
certificates makes explicit the linearization strategies. First, we introduce a bit of SCAT syntax.

3.1 Primitive programming statements of SCAT syntax

The primitive statements of SCAT are inspired from guarded commands of refinement calculus [BvW99]. As
detailed on figure 8, if-then-else and while-loop are macros defined from non-deterministic constructs. When
necessary, this makes easy to express that condition c and its negation ¬c are abstracted by different strategies
(e.g. if t1 and t2 are two linear expressions, then t1 = t2 is directly a polyhedron, whereas t1 6= t2 is often
imprecisely abstracted).

“if c then p1 else p2 fi” , (bcc; p1) q (b¬cc; p2) “x← t” , x← bx = old(t)c

“while c do p done” , (bcc; p)∗; b¬cc “p1 q p2” ,
∐

0≤`≤1

{0 7→ p1 | 7→ p2}(`)

Figure 8: Definition of macros from primitive statements

Here, statement “p1 q p2” runs non-deterministically p1 or p2: this operator is a join in the lattice of state-
ments for order p � p′ read as “p refines p′”. Statement “p∗” iterates statement p either a non-deterministic
number of times or infinitely. 6 Actually, the binary join in “p1 q p2” is derived from a more general bounded-
join operator

∐
v≤`≤v′ . At last, assignment is itself derived from the general guarded assignment “x← bcc”

which non-determistically assigns a value to x such that condition c is satisfied. In c, all occurrences of x under
a “old” subterm refer to the value of x in the prestate of the assignment. All other occurrences of x refer to its
final value. Actually, if c does not contain an occurrence of x under a old, then “x← bcc” is exactly equivalent
to “x← b>c; bcc” (which first assigns x to an arbitrary value, and then ensures c).

3.2 A certificate for the code of figure 1 (illustrating delay of a join)

Below, we present a certificate for source of figure 1 that corresponds to the analysis of page 6. First, we focus
on the linearization of statement “r ← x × y” in the “then-branch” : y is abstracted as interval 6..10. This is
expressed by the statement “r ← mpi x y (6, 10)” where “mpi” is a function defined in the SCAT library: “mpi”
stands for multiplication of a positive by an interval. This function is parameterized by two arithmetic terms t1
and t2 and a pair of scalars (v1, v2). It returns a “Hoare-term” that associates the concrete term “t1 × t2” to
an abstraction in the form of a pre/post specification, accompanied by a COQ proof-term that the concrete term
satisfies the specification. In the case of mpi, the precondition is “0≤ t1 ∧ v1≤ t2≤ v2” and the postcondition is
“λx′.old(t1)×v1≤x′≤old(t1)×v2” where x′ represents the result of the concrete term “t1 × t2”. This allows
to define “r ← mpi x y (6, 10)” as the certificate p such that

C(p) = r ← x× y A(p) = d0 ≤ x ∧ 6 ≤ y ≤ 10e ;
r ← bold(x)× 6 ≤ r ≤ old(x)× 10c

The safety of source of figure 1 is now established by certificate at figure 9. This certificate uses a statement of
the form “/0≤`≤1 (p1 q p2) ; p3 .” expressing that the concrete code is the one of “(p1 q p2) ; p3”, but, that
it must be analyzed as “(p1;p3) q (p2;p3)”. Here ` is the partition label that is bound to p3, that must be not
used by its concrete generated code, and that equals 0 if the left branch of the join as been executed or 1 otherwise.

6SCAT statements have almost the structure of a Kleene algebra, with “(q, b⊥c)” as the additive monoid, with “(; , b>c)” as the multi-
plicative one, and with “.∗” as the star operator. The only difference is that b⊥c is not right-annihilator of “;” (because error d⊥e is also a
left-annihilator).
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Below, the left side is the result from unfolding “if” macro in source of figure 1. The corresponding certificate is
given on the right side.

b1 ≤ x ≤ 10c ;(
q bx ≤ 5c; y ← x+ 5
b¬x ≤ 5c; y ← x− 5 ;

)
r ← x× y ;
d6 ≤ r ≤ 50e ;
r ← r + x+ y ;
d13 ≤ r ≤ 65e

b1 ≤ x ≤ 10c ;

/
0≤`≤1

 (
q bx ≤ 5c ; y ← x+ 5
b¬x ≤ 5c ; y ← x− 5

)
;

r ← mpi x y {0 7→ (6, 10) | 7→ (1, 5)}(`)

. ;

d6 ≤ r ≤ 50e ;
r ← r + x+ y ;
d13 ≤ r ≤ 65e

Figure 9: “Desugared” code and certificate of source in figure 1

3.3 Certificate for source of figure 7 (illustrating loop unrolling & invariant)
The strategy described in figure 7 to analyze the source in the same figure, is now expressed by the certificate at
figure 10. This certificate uses a statement “/0≤ ≤n p1

∗φ;p2 .” meaning that

bx ≤ 10c ;

/
0≤`≤1


(
q bx ≤ 5c ; y ← x+ 5
b¬x ≤ 5c ; y ← x− 5

)
;

i← 0 ; r ← 0 ;

/
0≤ ≤1

(
(bi ≤ x− 1c; i← i+ 1; r ← r + y)

∗φ
;

b¬i ≤ x− 1c

)
.

. ;

d0 ≤ r ≤ 50e

where invariant φ , i ≤ x ∧ 0 ≤ r ∧ {0 7→ r ≤ 10.i | 7→ r ≤ 5.i}(`)

Figure 10: Certificate for source of figure 7

• the concrete code is the one of “p1
∗;p2” ;

• the abstract code is analyzed as a join of n+ 1 branches (n being a natural number), where

– for all k in 0 . . . n − 1, the branch k (if any) is analyzed as “pk1 ;p2”. In other words, p1 is iterated k
times, before p2 is run.

– last branch is analyzed as “pn1 ;p1
∗φ;p2” using loop-invariant “φ” in analysis of loop “p1

∗”.

3.4 Certificates for source of figure 5 (illustrating composition of Hoare-terms)
First, we consider the “homogeneity strategy” described at section 2.3 to analyze certificate of source 5. This illus-
trates the composition of Hoare-terms. The certificate below means to approximate the term “y∗x+z∗(−x )+z∗5”
by intervalizing the first occurrence of x as 1 . . . 5 and−x as −5 . . .− 1, and to compose these two “Hoare-terms”
using let-in.

b1 ≤ x ≤ 5 ∧ 1 ≤ y ≤ 3 ∧ 1 ≤ z ≤ 3c;
r ← let y0 = mpi y x (1, 5) in

let z0 = mpi z (−x) (−5,−1) in
y0 + z0 + z × 5 ;

d1 ≤ r ≤ 27e

Here, the corresponding concrete term is the addition of the concrete terms of y0 and z0, plus z × 5. Similarly,
its abstract code expresses that the result is the addition of a possible result of y0 with a possible result of z0, plus
z × 5.

Now, let us consider in figure 11 a variant of this example using the last trace partitioning technique exposed
in section 2.4. It uses a certificate of the form “/0≤`≤1 t1≤? t2 : p .” expressing that the concrete code is the one
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of “p”, but, that it must be analyzed using a case analysis based on t1 ≤ t2 or t2 + 1 ≤ t1. Hence, ` is a partition
label that is bound to p and that equals 0 if t1 ≤ t2 or 1 otherwise.

In figure 11 “rew” names a lemma expressing equality of terms (y−z)×x+z×5 = y×x+z×(−x)+z×5.
Currently, our verifier does not embed itself ring rewriting. But such a rewriting lemma can be generated in COQ
by the analyzer and proved automatically in COQ using ring tactic. Then, this “rew” lemma may be used as
a certificate of term of the form “rew[t]”. This generates the same abstract code than t but with concrete term
y×x+ z× (−x) + z× 5, at the condition – verified during typechecking – that the concrete term generated from
t is (y − z)× x+ z × 5.

At last mni stands for multiplication of a negative by an interval. Thus, on branch “0 ≤ (y − z)”, we have
y − z ≤ r0 ≤ 5× (y − z). Whereas on branch “y − z + 1 ≤ 0”, we have 5× (y − z) ≤ r0 ≤ y − z.

b1 ≤ x ≤ 5 ∧ 1 ≤ y ≤ 3 ∧ 1 ≤ z ≤ 3c;

/
0≤`≤1

 0≤? y − z :
r ← rew [let r0 = {0 7→ mpi (y − z) x (1, 5) | 7→ mni (y − z) x (1, 5)}(`) in

r0 + z × 5]

. ;

d5 ≤ r ≤ 15e

Figure 11: Mixing intervalization & rewriting & case analysis (trace partitioning)

3.5 Linear interpolation (illustrating full unrolling of loops)
This example below is adapted from [MR05] in order to have only integer computations. The purpose of the
source (given figure 13) is to compute output variable y in function of input variable x as defined by the piecewise
function at figure 12.

x

y range of x equation of y
−∞ . . . −1 −6
−1 . . . +1 3.x− 3
+1 . . . +3 6.x− 6
+3 . . . +∞ 12

Figure 12: A piecewise function

This computation is implemented as given in figure 13. Roughly, an array tx stores the abscissa range of the
i+ 1-th “piece” as “tx(i) ... tx(i+ 1)” (for i in 0 . . . 2). Thus, an initial loop search the value of i corresponding
to x. Then, the i + 1-th piece is simply defined as the straight line of slope “tc(i)” and containing the point of
coordinate “(tx(i), ty(i))”.

i 0 1 2 3
tx ? −1 1 3
tc 0 3 6 0
ty −6 −6 0 12

i←0 ;
whi le i≤ 2 ∧ tx(i+1) < x do
i←i+1

done ;
y←tc(i)*(x-tx(i))+ty(i) ;
d-6≤ y ∧ y≤ 12e

Figure 13: Concrete computation of the piecewise function

In order to deal with this source, we have thus extended our formalism to deal with constant arrays. Actually,
they are only interpreted as unary symbol functions in the language of terms. In other words, the semantics of our
toy language does not require that array accesses are inside array bounds.
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Now, let us apply the strategy promoted by Mauborgne and Rival [MR05] on this source. It simply consists
in unrolling completely the loop in 3 iterations. Indeed, after 3 iterations, the guard of the loop body “i ≤ 2”
becomes false. Then, for each i in 0..2, we can abstract term “tc(i)” as its value. Hence, we avoid the need to
introduce an explicit loop invariant and a complex abstraction of the multiplication.

In certificate of figure 14, we use a variant of loop-unrolling noted “/0≤`≤n+1 p1
∗;p2 .”. Here, the lack of

loop-invariant indicates that the loop is fully unrolled. Hence, it means that:

• the concrete code is the one of “p1
∗;p2”

• the abstract code is analyzed as a join of n+ 2 branches where

– for k in 0 . . . n, the k-th branch is analyzed as “pk1 ;p2”.

– the last branch with k = n+ 1 is analyzed as “pk1 ; d⊥e”: its safety implies that p1 is iterated at most
n times.

– ` is a partition label allowing to access the value of k both in p1 and p2.

In other words, in the certificate of figure 14, the value of ` is exactly the one of i. This allows to abstract term
tc(i) by case analysis on ` using mlc (for “multiplication at left by a constant”). Hence, in figure 14, “mlc t1 t2 v”
is a Hoare-term such that its corresponding concrete term is t1 × t2, and under precondition t1 = v the abstract
result is v × t2. Notice that the statement “b¬(i ≤ 2 ∧ tx(i+ 1) < x)c” is here always analyzed in a context
where i ≤ 2, and thus, this condition reduces to ensure x ≤ tx(i+ 1).

i← 0 ;

/
0≤`≤2+1


(bi ≤ 2 ∧ tx(i+ 1) < xc ; i← i+ 1)

∗
;

b¬(i ≤ 2 ∧ tx(i+ 1) < x)c ;
y ← let y0 = mlc tc(i) x−tx(i) {1 7→ 3 | 2 7→ 6 | 7→ 0}(`) in

y0 + ty(i)

. ;

d−6 ≤ y ∧ y ≤ 12e.

Figure 14: Certificate for source of figure 13

3.6 Exhaustive exploration by trace partitioning
The source of figure 15 is also adapted from Barycentre example of [MR05]. As our prototype does not know yet
handling floating points, we use an euclidean division on integers (noted by operator /) instead of a floating-point
division. However, this does not change too much the global idea of the example.

Here successive approximations of × and / over an interval would be too imprecise. The strategy promoted
by Mauborgne and Rival [MR05] is here to test −10 ≤ x ≤ 10 for all possible values of r in the interval 0 . . . 5.
Hence, linearization is simply done by abstracting r as a constant. This kind of strategy is expressed on certificate
of figure 16 using a certificate of the form “/v≤`≤v′ explore t in p .” meaning that

• the concrete code is the one of p ;

• the abstract code requires first “v ≤ t ≤ v′”, then “bt = `c ;A(p)” is analyzed for each value ` in “v . . . v′”.
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b0 ≤ r ≤ 5 ∧ −10 ≤ x, y ≤ 10c;
x← (x× r + y)/(r + 1) ;
d−10 ≤ x ≤ 10e

Figure 15: Computation of a barycentre

b0 ≤ r ≤ 5 ∧ −10 ≤ x, y ≤ 10c;

/
0≤`≤5

 explore r in
x← let x0 = mrc x r ` in

dbpc x0+y r+1 `+1

. ;

d−10 ≤ x ≤ 10e

Here, mrc is similar to previous mlc but for “mul-
tiplication at right by a constant”. Function dbpc

stands for “division by a positive constant”. Hence,
“dbpc t1 t2 v” is a Hoare-term such that its concrete
term is “t1/t2”, its preconditon is “t2 = v ∧ 0 ≤ v”
and its result x satisfies postcondition

“x× v ≤ old(t1) ≤ x× v + (v − 1)”.

Figure 16: Certificate for source of figure 15
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4 Formalizing SCAT

This section presents SCAT formalization with slight differences with respect to the current implementation in
COQ. See discussion in section 5. The subset of the SCAT certificates language presented here is sufficient to
express most of the examples given in section 3.

This section first defines the syntax and the semantics of SCAT programs. Then, it specifies the VCG (VC-
Generator) and its correctness with respect to operational semantics. This VCG is very close to a computation
of strongest-postcondition, but approximates it using postconditions in S]. One of its main feature is to work
with a weak projection operator . \ . : it still works even if this operator is identity, that is, when it does not
perform a projection7. Actually, this approach is inspired from [BJPT10]. Another main feature is the support
of partition labels, through a mechanism of constant propagation. At last, this section provides the definition of
SCAT certificates and their verification. It states our safety theorem with respect to the original source. The proofs
can be found in our COQ code [Bou13].

4.1 Syntax and operational semantics of SCAT programs

We first define the abstract syntax T of terms. We use t, t′ : T. The main originality of T comes from the “old”
modality (inspired from [Fil98]) that allows to refer to an implicit previous state of the variables. This is expressed
by extending the usual semantics with an additional parameter for the previous state. Hence, JtK : S × S → V
expects the previous state as first parameter and the current one as second parameter. The frame of terms satisfies

x 6∈ |t| ⇒ JtK(s0, s1) = JtK(s0 ⊕ {x 7→ v0} , s1 ⊕ {x 7→ v1})
Constructors of T are given figure 17 with their associated frame and semantics. They are dotted when they
need to be distinguished from notations of the meta-language. The abstract syntax C of conditions introduced at
section 2.1, is also defined in figure 17. Its semantics is similar to the one of T.

When using old is irrelevant (there is no implicit previous state), by convention, it is interpreted as identity.
More formally, we define the unary versions of JtK and JcK with the meaning JtK(s) , JtK(s, s) and JcK(s) ,
JcK(s, s). Hence, we have Jold(t)K(s0, s1) = JtK(s0) and Jold(t)K(s) = JtK(s).

t , ẋ | old(t0) | v̇ | t1 ♦̇ t2
JtK(s0, s1) , s1(x) | Jt0K(s0, s0) | v | Jt1K(s0, s1) ♦ Jt2K(s0, s1)

|t| , {x} | |t0| | ∅ | |t1| ∪ |t2|

where ♦ : V ×V→ V with ♦ ∈ {+, ∗,−, /,mod}

c , > | ⊥ | t1 Ṙ t2 | ¬̇ c | c1 ♥̇ c2
JcK(s0, s1) , True | False | Jt1K(s0, s1) R Jt2K(s0, s1) | ¬ JcK(s0, s1) | Jc1K(s0, s1) ♥ Jc2K(s0, s1)

|c| , ∅ | ∅ | |t1| ∪ |t2| | |c| | |c1| ∪ |c2|

whereR : V ×V→ Prop withR ∈ {=,≤, <,>,≥, 6=}
and ♥ : Prop×Prop→ Prop with ♥ ∈ {∧,∨}

Figure 17: Syntax and semantics of terms and conditions

The abstract syntax P of SCAT programs includes primitive constructs and derived constructs. The latter
have been defined in figure 8. The former are given in figure 18 together with their natural semantics (big-step
operational semantics) : syntactic elements appear at the bottom of inference rules on the left of ` symbol. This
syntax is actually a higher-order abstract syntax: in constructor “

∐
v≤`≤v′ p(`)” ` is a metavariable and p is a

function of type V→ P. As formalized by the semantics, here instances of ` only range between constants v and
v′ (thus p is only used as a finite map). Statement “clone x in p” runs p on a local copy of variable x. It typically
allows to encode “let x = t in p” as the more primitive “clone x in (x← t; p)”.

The natural semantics of P is a ternary relation denoted “p ` s0 → s1” where s0 : S is the initial state, p : P
is a concrete program, and s1 : S ] { } is a final state or an error  . Here, operator ⊕ is extended on its left
operand such that  ⊕ f ,  . This relation is defined by inductive rules of figure 18 and uses definition 2 below.

7Projection approximates elimination of existential quantifier.
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Definition 2. Given χ ⊆ X, we say that “s1 coincides with s2 on χ” and we note s1 ≡χ s2 if and only if
∀x ∈ χ, s1(x) = s2(x).
This defines ≡χ as an equivalence relation.

JcK(s)
bcc ` s→ s

JcK(s)
dce ` s→ s

¬ JcK(s)
dce ` s→  

s1 ≡X\{x} s0 JcK(s0, s1)

x← bcc ` s0 → s1

p1 ` s→  
p1; p2 ` s→  

p1 ` s0 → s1 s1 6=  p2 ` s1 → s2

p1; p2 ` s0 → s2 p∗ ` s→ s

p ; p∗ ` s0 → s1

p∗ ` s0 → s1

v ≤ v0 ≤ v′ p(v0) ` s0 → s1∐
v≤`≤v′

p(`) ` s0 → s1

p ` s0 → s1

clone x in p ` s0 → s1 ⊕ {x 7→ s0(x)}

Figure 18: Syntax and natural semantics of primitive programs

x← t ` s→ s⊕ {x 7→ JtK(s)} p1 ` s0 → s1 ∨ p2 ` s0 → s1 ⇒ p1 q p2 ` s0 → s1

(JcK(s0) ∧ p1 ` s0 → s1) ∨ (¬ JcK(s0) ∧ p2 ` s0 → s1) ⇒ if c then p1 else p2 fi ` s0 → s1

¬ JcK(s)⇒ while c do p done ` s→ s

(JcK(s0) ∧ p; while c do p done ` s0 → s1) ⇒ while c do p done ` s0 → s1

Figure 19: Derived rules of macros

4.2 Abstract semantics and VC-Generator
Our VCG is specified through an abstract semantics. It needs some new definitions summarized below:

• In the abstract semantics, each loop “p∗” must be annotated by the loop-invariant φ discovered by the
analysis. We write “p∗φ” for p∗φ , dφe; (p; dφe)∗.

• We note |p| : FSet(X) the frame of program p. It has a quite straightforward definition. We only give the
less obvious cases:

|x← bcc| , {x} ∪ |c| |clone x in p| , {x} ∪ |p|

∣∣∣∣∣∣
∐

v≤`≤v′
p(`)

∣∣∣∣∣∣ ,
⋃

v≤`≤v′
|p(`)|

It satisfies x 6∈ |p| ∧ p ` s0 → s1 ⇒ p ` s0 ⊕ {x 7→ v} → s1 ⊕ {x 7→ v}

• The modifying frame of programs
←−
|.| : P→ FSet(X), returning the set of potentially modified variables,

is defined in a quite similar way:

←−−−−−−
|x← bcc| , {x}

←−−−−−−−−−
|clone x in p| ,

←−
|p|\{x}

←−−−−−−−−∣∣∣∣∣∣
∐

v≤`≤v′
p(`)

∣∣∣∣∣∣ ,
⋃

v≤`≤v′

←−−−
|p(`)|

Hence,
←−
|p| ⊆ |p| and x 6∈

←−
|p| ∧ p ` s0 → s1 ∧ s1 6=  =⇒ s1(x) = s0(x).

This operator is used to authorize “partial” loop-invariant φ: the “full” invariant φ1 is obtained by extending
φ with the part of the loop-precondition remaining unassigned by the loop (see figure 20).
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〈χ , φ〉 bcc 〈χ , φ u c〉
φ v c

〈χ , φ〉 dce 〈χ , φ〉

(χ1, σ) , freshχ0({x}) φ1 , φ0[σ] c1 , c[x
old←−− ˙σ(x)]

〈χ0 , φ0〉 x← bcc
〈
χ1 , (φ1 u c1)\{σ(x)}

〉
〈χ0 , φ0〉 p1 〈χ1 , φ1〉 〈χ1 , φ1〉 p2 〈χ2 , φ2〉

〈χ0 , φ0〉 p1; p2 〈χ2 , φ2〉

φ0 v φ (χ1, σ) , freshχ0(
←−
|p|) φ1 , (φ0[σ] u φ)\σ[

←−
|p|] 〈χ1 , φ1〉 p 〈χ2 , φ2〉 φ2 v φ

〈χ0 , φ0〉 p∗φ 〈χ1 , φ1〉

n , max(0, v′ − v + 1) 〈χ0 , φ0〉 p(v) 〈χ1 , φ1〉 . . . 〈χ0 , φ0〉 p(v′) 〈χn , φn〉

〈χ0 , φ0〉
∐

v≤`≤v′
p(`)

〈 ⋃
0≤i≤n

χi ,
⊔

1≤i≤n

φi

〉

(χ, σ) , freshχ0
({x}) 〈χ , φ0[σ] u x = σ(x)〉 p 〈χ1 , φ1〉

〈χ0 , φ0〉 clone x in p
〈
χ1 , φ1[σ]\{σ(x)}

〉
Figure 20: Abstract semantics of programs

• We define an operation “freshχ1(χ0)” with a result (χ2, σ) : FSet(X) × FMap(X,X) such that if
χ0 ⊆ χ1, then σ is an involution and χ0 ⊆ dom(σ) and σ[χ0] ∩ χ1 = ∅ and χ2 = σ[χ0] ∪ χ1. Hence,
variables in χ2\χ1 are “fresh” renamings of those in χ0 through σ.

• At last, we define an operation “c[x old←−− t]” (of result in C), that substitutes variable x by term t only in
subterms under a “old” of condition c, and then removes “old” modalities of c. We also define a more
standard substitution operation “t1[x← t0]” (removing also old from t1). Formally, they satisfy:

r
c[x

old←−− t]
z

(s) = JcK(s⊕ {x 7→ JtK(s)} , s)
∣∣∣c[x old←−− t]

∣∣∣ ⊆ |c| ∪ |t|
Jt1[x← t0]K(s) = Jt1K(s⊕ {x 7→ Jt0K(s)})

Below ẋ1[x← t0] is t0 if x1 = x or ẋ1 otherwise.

t = ẋ1 | old(t1) | v̇ | t1 ♦̇ t2
t[x← t] , ẋ1[x← t0] | t1[x← t0] | v̇ | t1[x← t0] ♦̇ t2[x← t0]

t[x
old←−− t] , ẋ1 | t1[x← t0] | v̇ | t1[x

old←−− t0] ♦̇ t2[x
old←−− t0]

c = t1 Ṙ t2 | c1 ♥̇ c2 | . . .
c[x

old←−− t] , t1[x
old←−− t] Ṙ t2[x

old←−− t] | c1[x
old←−− t] ♥̇ c2[x

old←−− t] | . . .

• The abstract semantics is defined as a ternary relation inspired from Hoare triples with an explicit man-
agement of fresh variables using the χ sets. The triple “〈χ0 , φ0〉 p 〈χ1 , φ1〉” relates program p to
precondition φ0 and postcondition φ1. Valid triples are defined by induction on figure 20. They satisfy
|p| ∪ |φ0| ⊆ χ0 ⇒ χ0 ∪ |φ1| ⊆ χ1.

Given a precondition 〈χ0, φ0〉 and a program p such that |p| ∪ |φ0| ⊆ χ0, our VCG either fails, or computes
a postcondition 〈χ1, φ1〉 such that triple 〈χ0 , φ0〉 p 〈χ1 , φ1〉 is valid. Note that the premises of the rules of
figure 20 involve only definitions and inclusion test v.
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Definition 3 (VCG checker). Using our VCG, we define .X : P→ bool such that pX ⇒ ∃χ∃φ. 〈|p| , >〉 p 〈χ , φ〉.

Our main technical lemma is given below. Here p is a statement inside a bigger program which global set
of variables is χ. And, χ0 is an extension of χ where new names correspond to old values of some variables in
χ: the relation between χ0 variables are specified by abstract precondition φ0. Hence, given an initial state s0,
we also assume s′0 which coincides with s0 on χ, but which gives also the required old values of variables such
that concrete precondition γ(φ0)(s′0) holds. This lemma claims that for any final state s1, there exists s′1 which
coincides with s1 on χ, but still coincides with s′0 on χ0\χ and satisfies postcondition γ(φ1).

Lemma 1. For all s0, s1, p, χ, χ0, φ0, χ1, φ1 and s′0,
If p ` s0 → s1 and 〈χ0 , φ0〉 p 〈χ1 , φ1〉 and |p| ⊆ χ and χ ∪ |φ0| ⊆ χ0 and s′0 ≡χ s0 and γ(φ0)(s′0)
Then, s1 6=  and there exists s′1 such that s′1 ≡χ s1 and s′1 ≡χ0\χ s

′
0 and γ(φ1)(s′1).

In particular, taking χ = χ0 = |p| and s′0 = s0, we deduce:

Theorem 1 (VCG safety). For any program p, if pX returns true then p can not reach error state from any initial
state, i.e. we have pX ⇒ ¬ p ` s→  .

4.3 The SCAT certificate language
The syntaxP of SCAT certificates extends syntax P with additional constructs. In definition 4, we do not defineP
as an inductive type, but by its interpreters (i.e. as a shallow embedding). This allows an incremental construction
of P language.

Definition 4. The type P of certificates for programs is defined as a pair with projections C : P → P and
A : P→ P such that for all p : P, “C(p) refines A(p)” i.e.

(¬A(p) ` s0 →  ) ⇒ (C(p) ` s0 → s1 ⇒ A(p) ` s0 → s1)

From the preceding definition and theorem 1, we immediately get theorem 2

Theorem 2 (SCAT safety). For all p : P, A(p)
X ⇒ ¬C(p) ` s→  

Below, we build all syntactic constructs of P language as a pair C/A as specified in definition 4. We note dec
=

the decidable syntactic equality on P (after normalization in the submonoid of sequence). Its result is implicitly
coerced in C as ⊥ (false) or > (true). First, all construct of P are trivially lift to P. We detail only some of the
constructs introduced in section 3.

• Certificatep for “/0≤`≤1 (p1 q p2) ; p3(`) .” – where ` is a metavariable andp1,p2 : P andp3 : V→ P

– is defined by

C(p) ,
(
C(p1) q C(p2)

)
;

C(p3(0))
A(p) ,

⌈
C(p3(1))

dec
= C(p3(0))

⌉
;∐

0≤`≤1
{0 7→ A(p1) | 7→ A(p2)}(`) ;
A(p3(`))

• Certificate p for “/0≤ ≤n p1
∗φ;p2 .” – where p1,p2 : P and n : N and φ : S] – is defined by

C(p) , C(p1)
∗

;
C(p2)

A(p) ,
∐

0≤`≤n

A(p1)` ;{
n 7→ A(p1)

∗φ | 7→ b>c
}

(`) ;

A(p2)

where VCG of “A(p1)`” iterates exactly ` times VCG of A(p1).

• Certificate p for “/0≤`≤1 t1≤? t2 : p0 .” – where t1, t2 : T and ` is a metavariable and p0 : V → P – is
defined by

C(p) , C(p0(0)) A(p) ,
⌈
C(p0(1))

dec
= C(p0(0))

⌉
;∐

0≤`≤1 {0 7→ bt1 ≤ t2c | 7→ bt2 + 1 ≤ t1c}(`);A(p0(`))
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• Certificate p for “/v1≤`≤v2 explore t in p0(`) .” – where t : T and v1, v2 : Z and ` is a metavariable and
p0 : V→ P – is defined by

C(p) , C(p0(v1))) A(p) , dv1 ≤ t ≤ v2e ;⌈∧
v1+1≤`≤v2 C(p0(`))

dec
= C(p0(v1))

⌉
;∐

v1≤`≤v2 bt = `c;A(p0(`))

• Certificate p for “/0≤`≤n+1 p1
∗;p2 .” – where ` is a metavariable and p1,p2 : V → P and n : N – is

defined by

C(p) , C(p1(0))
∗

;
C(p2(0))

A(p) ,
⌈∧

1≤`≤n+1 C(p1(`))
dec
= C(p1(0))

⌉
;⌈∧

1≤`≤n+1 C(p2(`))
dec
= C(p2(0))

⌉
;∐

0≤`≤n+1 giter ` (λ`′.A(p1(`′))) ;
{n+ 1 7→ d⊥e | 7→ A(p2(`))}(`)

where VCG of “giter ` p” is VCG of “p(0); . . . ; p(`− 1)”.

Actually P describes “abstraction patterns” for P. We also need to describe abstraction patterns for T and
for C. We limit here to the former case. Below, we abstract a term by a function X → P, where the variable in
parameter is used to store the result of the evaluation of the term.

Definition 5. The type T of certificates for term is as a pair with projections C : T → T and A : T → X → P
such that for all t : T,

¬A(t)(x) ` s→  ⇒ A(t)(x) ` s→ s⊕ {x 7→ JC(t)K(s)}

Below, we give basic operators about T :

• Certificate p : P for “x← t” – where x : X and t : T – is defined by

C(p) , x← C(t) A(p) , A(t)(x)

• Certificate t : T for “let x1 = t1 in t2” – where x1 : X and t1, t2 : T – is

C(t) , C(t2)[x1 ← C(t1)] A(t) , λx2. clone x1 in
(A(t1)(x1);A(t2)(x2))

⊕{x1 7→ A(t1)(x1);A(t2)(x1)}

For example, given x2 6= x1, certificate p for “x2 ← let x1 = t1 in t2” is

C(p)=x2 ← C(t2)[x1←C(t1)] A(p)=clone x1 in (A(t1)(x1);A(t2)(x2))

• Given a term t : T, we embed it as a certificate ṫ : T by

C(ṫ) , t A(ṫ) , λx. x← t

• At last, we define a Hoare-term as a triple (c0, t, c1) where c0 : C, t : T and c1 : X → C satisfy

Jc0K(s)⇒ Jc1(x)K(s, s⊕ {x 7→ JtK(s)}) (1)
Hence, we embed such a Hoare-term as the certificate t defined by

C(t) , t A(t) , λx. dc0e ;x← bc1(x)c

As shown in section 3, parameterized Hoare-terms can be defined in a library. Each definition of a Hoare-term
leads to a proof obligation of implication (1) above.
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5 Implementation in COQ

This section presents the COQ implementation of our current COQ prototype (downloadable on [Bou13]). In par-
ticular, subsection 5.3 presents our COQ sources and their usage. Other subsections introduce the main differences
between formalization of section 4 and the current COQ prototype. These differences lie in two categories: im-
provements of COQ implementation with respect to formalization of section 4 (in subsection 5.2), and conversely,
limitations of COQ implementation w.r.t. section 4 (in subsection 5.1).

5.1 Limitations of implementation w.r.t section 4
A poor’s man polyhedra domain Our VCG is not yet connected to a COQ implementation of polyhedra do-
main. Instead, polyhedra are represented as (deeply-embedded) logical formulas: intersection of two polyhedra
is simply implemented as a conjunction. Inclusions tests are solved using a decision procedure for Presburger’s
arithmetic (called omega). Convex-hull are computed by “hand” and inserted in certificates.

No partial invariants The implementation does not support partial loop-invariants described in page 14.

5.2 Most notable improvements of implementation w.r.t section 4
5.2.1 Checking efficiently non-influence of partition labels on concrete code

The definition of “/0≤`≤1 (p1 q p2) ; p3(`) .” construct in section 4.3, expresses that the value of partition label
` must have no influence on the concrete code generated from p3. Indeed, this is expressed through the following
requirement in the generated abstract code

C(p3(1)) ≡ C(p3(0))

Checking non-influence of partition labels in this way is rather costly: the comparison may involve huge portions
of concrete code. And, in many cases – example of figure 11 is the only example of this report that is not in this
case – it can be avoided. For instance, on certificate of figure 10, the only part depending on the value of “`” is
the invariant, which is obviously eliminated in concrete code. In order to overcome such inefficiencies, our COQ
implementation handles partition label in a more subtle way than section 4.

Basically, we change syntax of SCAT certificates, such that dependencies on labels in certificates can be more
finely expressed by the certificate producer. Typically, dependencies on a label can now only appear under an
operator called “branch”. All operators defined in section 4.3 that introduces an explicit dependencies over a
label (like “/0≤`≤1 (p1 q p2) ; p3(`) .”, “/v1≤`≤v2 explore t in p0(`) .”, etc) are now redefined in such way
that these dependencies disappear. When needed, a given dependency can be reintroduced by an explicit use of
“branch”. For example, the invariant certificate of figure 10 should now be written as in figure 21. Figure 25
(page 23) illustrates how branch is introduced for Hoare-terms using COQ syntax.

i ≤ x ∧ 0 ≤ r ∧ (branch ` {0 7→ r ≤ 10.i | 7→ r ≤ 5.i})

Figure 21: Reformulation of invariant of figure 10 with explicit dependencies on labels

Operator “branch” is defined for most syntactic categories of the certificate language : terms, invariants,
programs, etc. For instance, at the program level, “branch ˙̀ p” – where ˙̀ is deep partition label (see below) and
p : V → P – returns a certificate of type P. Hence, non-influence checking is only localized under a “branch”
operation. Sometimes, it is even not necessary: this is the case for invariants, which simply disappear in concrete
code. We formalize these ideas in the next paragraphs.

Deep partition labels in program statements First, at the level of P statements, we introduce a deeper em-
bedding of partition labels. We note L a countable type of label names. We use ˙̀, ˙̀

1 for elements of L. We
impose that such a partition label is associated with static bounds (fixed in the declaration of the label). Hence,
we assume two functions min,max : L → V such that values v associated to name ˙̀ are expected to satisfy
min( ˙̀) ≤ v ≤ max( ˙̀). These “deep” partition labels are handled by two additional constructs of P statements
with the following abstract semantics
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• VCG of “deflab ˙̀ v p” – where p : P – performs the VCG of p by associating value v to label ˙̀.

• VCG of “branch ˙̀ p” – where p : V → P – fails if ˙̀ has no associated value (there is no enclosing
“deflab ˙̀”) or performs the VCG of p(v) where v is the value associated to ˙̀.

The concrete semantics of deflab and branch do not depend on the values associated to ˙̀ (see figure 22). Hence,
whereas non-determinism of “. q .” and “.← b.c” is intern (or angelic), non-determinism of branch is extern
(or demonic) see [BvW99].

p ` s0 → s1

deflab ˙̀ v p ` s0 → s1

∀v,min( ˙̀) ≤ v ≤ max( ˙̀)⇒ p(v) ` s0 → s1

branch ˙̀ p ` s0 → s1

Figure 22: Concrete semantics of partition labels handling

In order to formalize the abstract semantics, we extend abstract judgment of section 4.2 with a notion of
environment for labels. As usual, such an environment is a finite map from labels to value δ : FMap(L,V). We
use ⊕ notation to express overriding of definition in environment.

Ideally, the verification that the value δ( ˙̀) fits in the bounds of ˙̀ could be done at deflab operation. However,
this makes safety theorem requiring the (meta)invariant ˙̀ ∈ dom(δ) ⇒ min( ˙̀) ≤ δ( ˙̀) ≤ max( ˙̀). In order to
avoid this difficulty, we choose a weaker (but less efficient) semantics : the verification of the bounds on δ( ˙̀) is
done in branch operation.

Hence, the rules of abstract semantics extends the rules of figure 20 – where judgment “〈χ0 , φ0〉 p 〈χ1 , φ1〉”
are extended as “δ ` 〈χ0 , φ0〉 p 〈χ1 , φ1〉” – with the ones of figure 23.

In this extended framework, lemma 1 and definition 3 of VCG checker are simply extended by lemma 2 and
definition 6 below. This allows to prove theorem 1 in the extended framework.

Lemma 2. For all s0, s1, p, χ, χ0, φ0, χ1, φ1, s′0 and δ
If p ` s0 → s1 and δ ` 〈χ0 , φ0〉 p 〈χ1 , φ1〉 and |p| ⊆ χ and χ ∪ |φ0| ⊆ χ0 and s′0 ≡χ s0 and γ(φ0)(s′0)
Then, s1 6=  and there exists s′1 such that s′1 ≡χ s1 and s′1 ≡χ0\χ s

′
0 and γ(φ1)(s′1).

Definition 6 (VCG checker). Using our VCG, we define .X : P→ bool such that

pX ⇒ ∃χ∃φ. ∅ ` 〈|p| , >〉 p 〈χ , φ〉

Deep partition labels in assertions In order to support loop invariants like those of figure 21, we introduce a
new syntactic category A for “assertions”. These assertions extend polyhedral conditions with the ability to read
the value of deep labels through assertion “branch ˙̀ a” where a : V→ A. Hence, the semantics of an assertion
“a : A” is a total function JaK : FMap(L,V) → S]. If the context is not consistent with the assertion (using
an undefined label) or with the label (its associated value is out of its bounds), then the semantics returns ⊥. This
may only lead VCG to fail in proving safety. The syntax and semantics of assertions is defined below together

δ ⊕
{

˙̀ 7→ v
}
` 〈χ0 , φ0〉 p 〈χ1 , φ1〉

δ ` 〈χ0 , φ0〉 deflab ˙̀ v p 〈χ1 , φ1〉

˙̀ ∈ dom(δ) min( ˙̀) ≤ δ( ˙̀) ≤ max( ˙̀) δ ` 〈χ0 , φ0〉 p(δ( ˙̀)) 〈χ1 , φ1〉
δ ` 〈χ0 , φ0〉 branch ˙̀ p 〈χ1 , φ1〉

Figure 23: Abstract semantics of partition labels handling
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with the usual notion of frame function.

a[δ, ˙̀] , if ˙̀ 6∈ dom(δ) or δ( ˙̀) 6∈ min( ˙̀)..max( ˙̀) then ⊥ else a(δ( ˙̀))

a , φ | a1 ∧̇ a2 | branch ˙̀ a

JaK(δ) , φ | Ja1K(δ) u Ja2K(δ) |
r
a[δ, ˙̀]

z
(δ)

|a| , |φ| | |a1| ∪ |a2| |
⋃

min( ˙̀)≤v≤max( ˙̀) |a(v)|

Hence, loop statements in abstract code actually uses assertions as invariants. Whereas invariants are ignored
in concrete semantics, abstract semantics of loops is now given by the following rule (with no support for partial
invariants as explained in section 5.1):

φ , JaK (δ) φ0 v φ δ ` 〈χ0 , φ〉 p 〈χ2 , φ2〉 φ2 v φ
δ ` 〈χ0 , φ0〉 p∗a 〈χ0 , φ〉

Deep partition labels in certificates As explained above, all statements defined in section 4.3 that introduces
an explicit dependencies over a label are now redefined in such way that these dependencies disappear. Non-
influence checking is removed from generated abstract code. But, in generated abstract code, dependencies on
labels remain under the form of a “deflab” statement. We limit below to detail the redefinition of statements
except loops: redefinition of statements for loop are given section 5.2.2.

• Certificate p for “/0≤ ˙̀≤1 (p1 q p2) ; p3 .” – where ˙̀ : L and p1,p2,p3 : P – is now defined by

C(p) , C(p1) q C(p2) ;
C(p3)

A(p) ,
∐

0≤v≤1

{0 7→ A(p1) | 7→ A(p2)}(v) ;

deflab ˙̀ v A(p3))

• Certificate p for “/0≤ ˙̀≤1 t1≤? t2 : p0 .” – where t1, t2 : T and ˙̀ : L and p0 : P – is now defined by

C(p) , C(p0) A(p) ,
∐

0≤v≤1

{0 7→ bt1 ≤ t2c | 7→ bt2 + 1 ≤ t1c}(v);

deflab ˙̀ v A(p0)

• Certificate p for “/v1≤ ˙̀≤v2 explore t in p0 .” – where t : T and v1, v2 : Z and ˙̀ : L and p0 : P – is
defined by

C(p) , C(p0) A(p) , dv1 ≤ t ≤ v2e ;∐
v1≤v≤v2 bt = vc; deflab ˙̀ v A(p0)

Dependencies in certificates can still be reintroduced using branch. Certificate p for “branch ˙̀ p0” – where
˙̀ : L and p0 : V→ P – is defined by

C(p) , C(p0(min( ˙̀))) A(p) ,
⌈∧

min( ˙̀)+1≤v≤max( ˙̀) C(p0(v)) ≡ C(p0(min( ˙̀)))
⌉

;

branch ˙̀ λv.A(p0(v))

5.2.2 VCG of loop unrolling

The abstract code generated from certificates of loop unrolling in section 4.3 is very inefficient. Indeed, the
number of VCG iterations on the loop body is quadratic in the number of unrolling steps, whereas it is linear in
our COQ implementation. This is achieved by introducing a dedicated construct in the syntax of abstract programs:
“le iter n ˙̀ p1 p2 p3” – where n : N, ˙̀ : L and p0, p1, p2 : P – is equivalent to

le iter n ˙̀ p1 p2 p3 ,
∐

0≤v≤n+1

giter v (λv′.deflab ˙̀ v′ p1) ;

deflab ˙̀ v ({n+ 1 7→ p3 | 7→ p2}(v))

But VCG of “le iter n ˙̀ p1 p2 p3” performs only n+ 1 iterations of p1 and p2, plus one iteration of p3.

20



For full unrolling of loops “/0≤ ˙̀≤n+1 p1
∗;p2 .” – where ˙̀ : L and p1,p2 : P and n : N – is now defined as

the certificate p such that

C(p) , C(p1)
∗

; C(p2) A(p) , le iter n ˙̀A(p1) A(p2) d⊥e

At last, partial unrolling statement of section 4.3 is now generalized with partition labels in the following way:
certificate p for “/0≤ ˙̀≤n+1 p1

∗a;p2 .” – where ˙̀ : L and p1,p2 : P and n : N and a : A – is defined by

C(p) , C(p1)
∗

; C(p2) A(p) , le iter n ˙̀ A(p1) A(p2) (A(p1)
∗a

; A(p2))

5.2.3 Coding a frame as an integer

In our implementation, the type X is defined as positive, that is the type of positive integers. Instead to rep-
resent frames as sets of variables, we overapproximate a frame by its upper bound: more precisely, a frame χ is
encoded as the lowest positive p such that

x ∈ χ⇒ x < p
This approximation both improves efficiency of frames computations (union between sets is efficiently approxi-
mated by maximum of integers), and simplifies metaproofs (reasoning on set inclusions is safely approximated
by reasoning on integer comparisons). This approximation is sufficient in most of the formalization (which deals
about “fresh” variables).

However, this approach is not sufficient for modifying frames involved in partial invariants. An other notion
of frame, similar to the one of the paper, must be used instead. Hence, our implementation does not yet support
partial invariants. They do not seem to raise any kind of difficulty: supporting them is only a matter of development
time (using two notions of frames instead of a single one).

5.2.4 Reflecting concrete wp-calculus to automate (meta)proofs of refinement

SCAT theory can be understood using two levels of refinement. The first level is that concrete semantics of
abstract programs refine their abstract semantics. The second level is that in certificates, generated concrete
programs refine generated abstract programs. Until here, we have expressed these two levels of refinement using
operational semantics for concrete semantics. Our implementation uses instead a much more effective semantics in
COQ proofs: a weakest-precondition calculus. This weakest-precondition calculus – which computes directly on
COQ propositions – allows to simplify proofs about concrete semantics. Similar ideas have been already detailed
in [Bou07].

However, we believe that “natural semantics” is the most simple semantics of concrete programs: hence it
should be used as the COQ specification of programs behavior. Thus, we have established in COQ a proof of
equivalence between the natural semantics presented at figure 18 and our weakest-precondition calculus.

Below, we rephrase the global picture of the formalization, using weakest-precondition calculus instead of
natural semantics. Actually, theorem 2, our main theorem, is unchanged. Only intermediate refinement steps are
rephrased. Hence, our wp-calculus is a function wlp : P→ (S→ Prop)→ S→ Prop such that

wlp(p)(Q)(s0) ⇔ (∀s1, p ` s0 → s1 ⇒ s1 6=  ∧Q(s1))

We do not detail its inductive definition: it is standard and can be found in our COQ sources [Bou13]. Lemma 2,
and theorem 1 are actually expressed under the following form below:

Lemma 3. For all s0, p, χ, χ0, φ0, χ1, φ1, s′0 and δ
If δ ` 〈χ0 , φ0〉 p 〈χ1 , φ1〉 and |p| ⊆ χ and χ ∪ |φ0| ⊆ χ0 and s′0 ≡χ s0 and γ(φ0)(s′0)
Then, we have

wlp(p)(λs1.∃s′1.s′1 ≡χ s1 ∧ s′1 ≡χ0\χ s
′
0 ∧ γ(φ1)(s′1))(s0)

Theorem 3 (VCG safety). pX ⇒ wlp(p)(λs1.True)(s0).

Definition 4 is rephrased by definition 7 below. This allows much automated proofs that P statements are
wellformed.

Definition 7. The type P of certificates for concrete programs is defined as a pair with projections C : P → P
and A : P→ P such that for all p : P, wlp(A(p))(Q)(s) ⇒ wlp(C(p))(Q)(s).

21



Similarly, definition 5 is rephrased using wp-calculus by definition 8 below. Actually, this definition uses a
dual version of wlp at kernel level, as a function angel wlp : P→ (S→ Prop)→ S→ Prop such that

angel wlp(p)(Q)(s0) ⇒ ¬wlp(p)(λs1.¬Q(s1))(s0)

But, this dual version handles double negation of ¬wlp(p)(λs1.¬Q(s1))(s0) in a more effective way. Its main
interest comes from the property that using excluded-middle8, we have

¬wlp(p)(λs1.¬Q(s1))(s0) ⇔ ∃s1, p ` s0 → s1 ∧ (s1 6=  ⇒ Q(s1))

Definition 8. The type T of certificates for term is as a pair with projections C : T → T and A : T → X → P
such that for all t : T,

angel wlp (A(t)(x)) (λs1.s1 = s0 ⊕ {x 7→ JC(t)K(s0)}) (s0)

5.3 Presentation of the current SCAT prototype in COQ

The COQ sources of our SCAT prototype are downloadable on [Bou13]. A good entry point is file Examples.v
containing all the examples of section 3. Let us now present the verification process of a given source program.
Given a program called source and a certificate called annotated, the COQ proof that source is safe is
given by the small script below.

Goal is_ok source.
Proof.

apply vcg_correctness with (cert:=annotated).
(* 1st subgoal *) vm_compute ; auto.
(* 2nd subgoal *) simplify_vc_eval ; try omega.

Qed.

The goal to prove is “is_ok source” which exactly means

∀s∀s′, source ` s→ s′ ⇒ s′ 6=  

The script of the proof first calls our main theorem vcg_correctness (roughly theorem 2) using annotated
as witness. This splits the goal in two subgoals: first “source dec

= C(annotated)” and second “A(annotated)
X”.

The first goal is simply proved by computational reflection (tactic vm_compute). The second goal is proved by
calling our VCG which returns a big conjunction of VC, this conjunct is then split (tactic simplify_vc_eval),
and each VC is proved using tactic omega of Presburger’s arithmetic.

Figure 24 gives the main correspondences between paper notations and our COQ sources. On the contrary
to the paper presentation, our implementation distinguishes between syntax of concrete code (called prog) and
between syntax of abstract code (called kernel). This allows to oblige loops of abstract code to be annotated
with invariants. And certain constructs such as clone or branch that are not intended to be used in programs
(concrete code), appear only in kernel syntax. Hence, our COQ implementation does not define an operational
semantics for these constructs: their concrete semantics is instead directly provided by the concrete wp-calculus
presented in section 5.2.4. At last, the subcategory of atomic statements is shared between concrete syntax and
kernel syntax through a type called atom.

At last, figure 25 details the correspondence for Hoare-terms. It shows also how branch is made explicit
in Hoare-terms using COQ syntax. We do not describe here the structure of our COQ sources: see instead the
documentation extracted from the sources.

8On the contrary to the framework of [Bou07], expressing duality between wlp and angel wlp requires here excluded-middle. This due
to the fact that these predicate transformers are neither conjunctive nor disjunctive, because of the presence of both external non-determinism
(e.g. branch) or internal non-determinism (e.g. “.← b.c”) in the concrete semantics.

22



Types
V value
X var
T term
S state
C cond
S] abusively cond (see limitations of sec-

tion 5.1)
A assertion
P atom or prog or kernel
T abs_term
P certif

Terms and Conditions
Paper and COQ roughly coincide except:

old(t) told t

Statements in atom
old(t) told t
bcc ensure c
dce require c
x← t assign x t
x← bcc guassign [x] c (NB: guassign accepts

a list of variable to assign)

Statements in prog
Extend syntax of atom with
p; p′ seq p p’

or p -; p’
p∗ loop p

or bloop p done
p q p′ join p p’
if c then p else p′ fi ifc c then p else p’ fi
while c do p done idem

Statements in kernel
Extend syntax of atom with
p; p′ Kseq p p’
p∗a Kloop p a
p q p′ Kjoin p p’∐
v≤`≤v′ p(`) Kgjoin v v’ (fun l => p l)

clone x in p Kclone x p
deflab ` v p Kdeflab l v p
branch ` p Kbranch l p

Certificates in T
Extend Hoare-terms of figure 25 with
ṫ t
let x = t in t′ let_term x := t in t’
r[t] abs_rewrite t r

Certificates in certif
Extend prog syntax with
x← t abs_assign x t

/0≤`≤1 (p q p′) ; p′′ . joinseq p p’ l p’’
or with explicit convex-hull c
as joinchseq p p’ l p’’ c

/0≤`≤1 t≤? t′ : p . casescmp t t’ l p

/v≤`≤v′ explore t in p . explore t v v’ l p

p∗a bloop p
invariant a
done

/0≤ ≤n p
∗a;p′ . bloop p

fwd n
invariant a
then p’
done

/0≤`≤n+1 p
∗;p′ . bloop

split l
p

all n+1
then p’
done

Operations involved in semantics
JtK(s) teval t s

JtK(s, s′) oteval t s s’

JcK(s) eval c s

JcK(s, s′) oeval c s s’

 None

s⊕ {x 7→ v} add (vid x) v s

p ` s→ s′ sem p s s’ (for p:prog)
or asem p s s’ (for p:atom)

Checker
A(p) abstract p

C(p) concrete p

A(t) tabs t

C(t) tconc t

p
dec
= p′ prog_eq (normalize p)

(normalize p’)
NB: for p,p’: prog, syntactic
equality after normalization

A(p)X vc_eval (vcg p)

Thm 2 vcg_correctness

Figure 24: Main correspondences between paper notations and COQ sources

Names of Hoare-term functions in COQ
mpi mult_pos_interv
mni mult_neg_interv

mlc mult_left_cte
mrc mult_right_cte

dbpc Zdiv_by_pos_cte

Application of Hoare-term functions (with branch) in COQ examples
mlc t t′ 3 mult_left_cte t t’ 3
mlc t t′ (`+1) (with ` label) ht_branch (mult_left_cte t t’) l (fun v => v+1)
mlc t t′ {1 7→ 3 | 2 7→ 6 | 7→ 0}(`) ht_branch (mult_left_cte t t’) l

(fun v => match v with 1 => 3 | 2 => 6 | _ => 0 end)
mpi t t′ (6, 10) mult_pos_interv t t’ (6,10)
mpi t t′ {0 7→ (6, 10) | 7→ (1, 5)}(`) ht_branch (mult_pos_interv t t’) l

(fun v => match v with 0 => (6,10) | _ => (1,5) end)

Figure 25: Correspondence between paper and COQ for Hoare-terms
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6 Conclusion
This paper proposes a certificate format called SCAT to formally verify the results of static analyzers. Given
a source code and a SCAT-certificate, the SCAT-CHECKER produces a list of polyhedral inclusion tests that are
sufficient to ensure the safety of the source code. Our tool is formally certified in COQ with respect to the
operational semantics of the source code [Bou13].

SCAT aims to certify analyzers which perform dynamic program transformations in order to increase the
precision of their results. In our COQ development, we paid specific attention to easing the extension of SCAT
with new transformations. This requires defining the transformation in COQ and proving that its input (i.e. the
concrete code) refines its output (i.e. the abstract code). In order to provide automation for such a refinement
proof, we have developed a concrete weakest-precondition calculus which is reflected in COQ and inspired from
[Bou07]. Hence, tedious proofs on the operational semantics are avoided. This paper presents two significant
patterns of such transformations: linearization – for approximating non-affine code – and trace partitioning – that
increases precision with convex abstract domains.

In order to simplify the formalization and limit the development effort in COQ, we choose to restrict our SCAT-
CHECKER to the domain of polyhedra. However, the SCAT format of certificates can be used for analyzers based
on any combination of abstract domains as long as they are special cases of polyhedra (e.g. intervals, octagons,...).
Note that only the last iteration of the analysis must be replayed with the polyhedra domain in order to generate
the certificates which report the linearization of expressions.

Our work is dedicated to a posteriori certification of static analysis. However, as a conclusion, let us rephrase
our contributions as a variant of the proof-carrying code architecture of [BJP06, BJT07]. On the code-producer
side, the proof of safety is assigned to a static analyzer that produces a certificate p if it succeeds in discarding all
the safety requirements, or it just fails. On the code-consumer side, the certificate p is used to extract the source
program, C(p), and a Hoare proof sketch, A(p), that is played in our SCAT-CHECKER. Thanks to Theorem 2
the validity of A(p) implies the safety of C(p). The Hoare proof is designed to exactly stick to the behavior of
the analyzer on its last iteration so that the implications required at the core of the proof can be decided by the
inclusion test (v) of the abstract domain. Hence, we guarantee that a success of the analyzer leads to a proof
without resorting to more powerful logics and tools (such as SMT solvers or general theorem provers).

Perspectives. In future work, we plan to instrument an analyzer so that it returns SCAT certificates. This will
allow us to evaluate the efficiency of certificate generation and verification with the OCAML SCAT-CHECKER
extracted from our COQ development. Then, if it reveals that the size of certificates must be reduced, we will use
the technique of [BJT07] to reduce the size of our loop invariants. Moreover, the SCAT-CHECKER could use a
combination of strongest post-condition and weakest pre-condition calculus in order to be able to chose the way
that needs fewer external calls to basic polyhedra operations.

Our work is part of the VERASCO project on the development of certified analysis for the COMPCERT compiler.
Thus, the following step is to extend the SCAT format to address programs written in the Clight9 language. Since
the architecture of our checker establishes a clear separation of treatments of source code and abstract code, and
since in the context of critical software, we can assume non-recursive functions and no dynamic allocation of
memory, we have good hope that the addition of the remaining constructions of Clight (function call, arrays,
pointers, floating-point numbers) will retain the simplicity of our initial development.
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[Fil98] Jean-Christophe Filliâtre. Proof of imperative programs in type theory. In TYPES’98, volume 1657 of
LNCS, 1998. 4.1
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