Formally Verified Defensive Programming (FVDP)

efficient CoQ-verified computations from untrusted ML oracles

Habilitation (HDR) of Sylvain Boulmé — Sep 27, 2021

Reviewers

Andrew W. Appel Professor at Princeton University
Sandrine Blazy Professeur a I'Université de Rennes 1
Greg Morrisett Professor, Dean of Cornell Tech
Examiners

Hugo Herbelin Directeur de Recherche a I'Inria
Xavier Leroy Professeur au Collége de France
Jean-Francois Monin Professeur a I'UGA

Université
Grenoble Alpes

UC-A V Grer]obte]N;‘
A erimac EnsimAg ,) l ’

thesis & slides on http://www-verimag.imag.fr/~boulme/hdr.html

1/33


http://www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr .html Sep. 2021

Contents

High-level overview of my HDR-thesis contributions
My interface for foreign OCAML functions in CoQ
CoQ “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)

High-level overview of my HDR-thesis contributions 2/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Scientific proposal

Challenge
Formal verification of software
that produces/verifies safety-critical systems :
compilers, analyzers & verifiers.

Example : prevent compilers from introducing critical bugs
with a formal (mechanized) proof of the compiler correctness.

How ? | propose to
bind OCAML (the programming language)
to COQ (the interactive theorem prover)

ol >

and to apply Formally Verified Defensive Programming

High-level overview of my HDR-thesis contributions 3/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html

CoMPCERT, the 1st formally proved C compiler

Major success of software verification
“safest C optimizing compiler” from [Regher,etc@PLDI'11]
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See [Kéaster,etcQERTS'18].

Developed since 2005 by Leroy & collaborators (Blazy, etc)
More than 100Kloc of CoQ & OCAML

Lesson )
“If the formal-verification problem is too complex,

then change it for a simpler one!”
» Drop noncritical requirements, e.g. termination :
only consider partial correctness.

» Introduce untrusted oracles...

High-level overview of my HDR-thesis contributions

Sep. 2021

4/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Formally Verified Defensive Programming (FVDP)

Idea: complex computations by efficient functions, called oracles,
with an untrusted & hidden implem. for the formal proof
= only a defensive test of their result is formally verified

Example of COMPCERT register allocator [Rideau,Leroy'10]

e finding an efficient allocation is difficult

e checking the correctness of a given allocation is easier

= Register allocation provided by an OCAML imperative oracle
Only a checker is programmed and proved in COQ.

Typical applications NP-hard problems,
complex fixpoints (e.g. memoization or dynamic programming)...

Benefits of FVDP
simplicity + efficiency + modularity

OCAML oracles need to appear in COQ as “foreign functions”...

High-level overview of my HDR-thesis contributions 5/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

The issue of foreign OCAML functions in CoQ

Standard method to declare a foreign function in CoQ
“Use an axiom declaring its type; replace this axiom at extraction”

Example of Coq proof

Axiom oracle: nat — bool. Extract Constant oracle = "foo".
Lemma oracle_pure: V n, oracle n = oracle n.

congruence.
Qed.

Example of OCaml implementation

let foo =
let b = ref false in
fun (_:nat) -> (b:=not !b; !b)

INCORRECT oracle_pure is wrong for two “successive” calls

OCAML “functions” are not functions in the math sense.
Rather view them as “relations”, ie “nondeterministic functions”
P(Ax B) ~ A — P(B) where “P(X)" is “X — Prop”

High-level overview of my HDR-thesis contributions 6/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Oracles in COMPCERT : a soundness issue ?

CoMPCERT oracles are declared as “pure” functions
Example of register allocation :

Axiom regalloc: RTL.func — option LTL.func.

implemented by imperative OCAML code using hash-tables.

Not a real issue because
their purity is not used in the formal proof!

| propose to formally ensure such a claim [VSTTE'14],
by modeling OCAML foreign functions in CoQ as
“nondeterministic functions”
Successfully applied in the VPL (Verified Polyhedra Library)
[Boulmé, Fouilhé, Maréchal, Monniaux, Périn, etc, 2013-2018]

High-level overview of my HDR-thesis contributions 7/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

A CoQ model of OCAML pointer equality (==

OCAML “==" cannot be modeled as a “pure” CoQ function.
However, a trusted “==" seems useful for FVDP.

Example of Instruction scheduling in COMPCERT

Very elegant FVDP design of [Tristan,Leroy@POPL’08]
based on symbolic execution (of [King'76]).

But, still not in COMPCERT because of checkers inefficiency!

| have shown how to fix this efficiency issue
with the help of another FVDP design where

a “nondeterministic” model of == in CoQ
suffices to verify the answers of hash-consing oracles.

See [Six,Boulmé,Monniaux@OOSPLA'20] & [Six-Phd’'21].

High-level overview of my HDR-thesis contributions 8/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html

A “good” FVDP design is the key!

The FVDP-design trade-off (for a given application) :
Simplicity of formal verification
versus
Reduced overhead of “defensive tests”

FVDP designs in my HDR thesis for

> instruction scheduling in COMPCERT (optimizing compiler)

> abstract domain of polyhedra (VPL) for the VERASCO static
analyzer (on the top of COMPCERT)

> Boolean SAT-solving (SATANSCERT)

Central Issue
How “oracles” may help “defensive tests”
without being too hindered ?

High-level overview of my HDR-thesis contributions

Sep. 2021

9/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Polymorphic LCF Style (= Shallow Embeddings of Certificates)

Design patterns for a solver that bounds the set of solutions

Autarkic FVDP - Certificates i CFVDP - Polymorphic LCF Stylg

Spemf ication ciﬂcatiun \ ciﬁcanon
— Factory
Coq H Certlflcate :

OCaml L t

Inspired by old LCF prover, | propose “Polymorphic LCF Style”
as a “lightweight certificate handling”.

See [Boulmé,Maréchal,Monniaux,Périn,YuGSYNASC'2018]

High-level overview of my HDR-thesis contributions 10/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Feedback from the Verified Polyhedra Library

Benefits of switching from “Certificates” to “LCF style”.
» Code size at the interface Coq/OCAML divided by 2 :
shallow versus deep embedding (of certificates).

» Oracles debugging much easier :
interleaved executions of untrusted and certified computations.

See [Maréchal-Phd’17].

Generating certificates still possible from LCF style oracles.
See our COQ tactic for learning equalities in linear rational
arithmetic [Boulmé Maréchal@ITP'18].

High-level overview of my HDR-thesis contributions 11/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

FVDP by Data-Refinement

Two sources of “bureaucratic reasoning” in large FVDP proofs
1. optimized data-representations (wrt more naive ones)

2. impure computations (wrt pure ones)

Data-refinement helps in reducing both of them, simultaneously !

Examples

> Data-refinement for FVDP of Symbolic Execution
[Six,Boulmé,Monniaux@OOSPLA20]

> Data-refinement for FVDP of Abstract Interpretation
[Boulmé,Maréchal@JAR'19].

High-level overview of my HDR-thesis contributions 12/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Contents

My interface for foreign OCAML functions in CoQ

My interface for foreign OCAML functions in CoQ 13/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Features of my approach

e Almost any OCAML function embeddable into Coq.
(e.g. mutable data-structures with aliasing in CoQ)

e No formal reasoning on effects, only on results :

foreign functions could have bugs, only their type is ensured.

= Considered as nondeterministic.

e.g. for I/O reasoning, use FREESPEC or INTERACTIONTREES instead.

e OCAML polymorphism provides “theorems-for-free" about
> (some) invariant preservations by mutable data-structures
> arbitrary recursion operators (needs a small defensive test)

> exception-handling

e Exceptionally : additional axioms on results (e.g. pointer equality)
In this case, the foreign function must be trusted !

My interface for foreign OCAML functions in CoQ 14/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Introduction to my IMPURE library

Impure computation := C0Q code embedding OCAML code.

Based on may-return monads of [Fouilhé,Boulmé@VSTTE'14]
» Axiomatize (in CoQ) “A — Prop” as type " 77A"
to represent “impure computations of type A"
with “(k a)" as proposition “k ~» a"
with formal type ~»4:?77A — A — Prop
read “computation k may return value a"
and composition operators (on next slide)

> “7?77A" extracted like "A".

Forany “Axiom oracle:nat—??bool”, determinism is unprovable

V n bl b2, (oracle n)~bl — (oracle n)~b2 —bl=b2.

because, it reduces to contradiction “V (bl b2:bool), bil=b2"
when interpreting proposition “(oracle n)~»b" as “True”.

My interface for foreign OCAML functions in CoQ 15/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

May-return monads operators (and axioms)
Currently, only 3 operators with 2 additional axioms :

> RET4: A — 77A
with axiom (RET a1)~ay — aj=ap
formally interpretable as the identity relation
extracted as the identity function

> >=2p:1?7A—= (A—=>177B) =B
with axiom (k; >= k)~ b — Ja, ky~aA (kpa)~b

formally interpretable as the image of a predicate by a relation

“ky >= kp" actually written in CoQ "“D0 a <~ ki;; koa
extracted to OCAML as “let a=... in ... "

» mk_annota : V(k : 77A), ??{ a| k ~ a}
without axiom
formally interpretable as the trivially “True” relation

extracted as the identity function

My interface for foreign OCAML functions in CoQ 16/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html

Declaration of oracles : a COQ user wish

Sep. 2021

| would wish some “Import Constant” like

Import Constant ident:

permissive_type
= "safe_ocaml_value".

that acts like

Axiom ident: permissive_type.
Extract Constant ident =

"safe_ocaml_value".

but with additional typechecking ensuring that

any “safe_ocaml _value” compatible with
. N o . | soundness of
the OCAML extraction of “permissive_type

e . ermissive type
satisfies COQ theorems proved from the axiom. P yp

Should reject “"Import Constant ident: nat — bool :=..”
because “nat — bool” is not permissive,
but accept “nat — ??bool” as permissive.

My interface for foreign OCAML functions in CoQ 17/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming)

Permissivity

www-verimag.imag.fr/~boulme/hdr.html

Currently, only an informal notion (i.e. “human expertise”).
Hence, the CoQ type of OCAML oracles is part of the TCB.

Counter-Examples COQ types which are not permissive

Sep. 2021

nat — ??7{ n:nat | n < 10} (* eztracted as

nat — nat

nat — ?7(nat — nat) (* nat — (nat — nat)

*))
*))

Examples CoQ types which are permissive

(i.e. they are conjectured to be sound CoOQ types for oracles)

{ n:nat | n < 10} —» 7?7 nat (¥
V A, Ax(A — A) — 77(1list A) (* ‘ax(’a —

nat — nat
‘a) - (’a list)

*)
*))

More detailed explanation in my HDR thesis.

My interface for foreign OCAML functions in CoQ

18/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Embedding ML references into CoQ

Record cref{A}={set: A->77unit; get: unit—?7A}.
Axiom make_cref: V {A}, A — 7?7 cref A.

where "V {A}, A — ?? cref A" (permissive) is considered
sound with OCAML constants of “’a -=> ’a cref”, like

let make_cref x =

let r = ref x in {
set = (fun y -> r := y);
get = (fun () -> !r) }

but also like

let make_cref x =
let hist = ref [x] in {
set = (fun y -> hist := y::!hist);
get = (fun () -> nth 'hist (Random.int (length 'hist))) }

= No formal guarantee on reference contents
except invariant preservations encoded in instances of type A.

My interface for foreign OCAML functions in CoQ 19/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Contents

CoQ “Theorems for free” about polymorphic oracles

Co0Q “Theorems for free" about polymorphic oracles 20/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Soundness of permissivity = unary parametricity of OCAML

MetaThm Assuming that permissivity of (V A, A-??74) is sound,
any safe OCAML “pid:’a -> ’a” satisfies

when (pid x) returns normally some y then y = x.
Proof

1) a CoQ “wrapper” of pid, called cpid is a pseudo-identity
Axiom pid: V {A}, A-=77A.

(* We define below cpid:V{B}, B — ??B %)
Program Definition cpid {B} (x:B): ?? B :=
DO zepid (A={ y | vy = x }) x ;;
RET ‘z.

Lemma cpid_correct A (x y:A):

(cpid x) ~ y — y=x.

2) at extraction : let cpid x = (let z = pid x in z)

This meta-theorem is a “theorem for free” for [Wadler'89]
ie a proof by “(unary) parametricity of polymorphism”
for [Reynolds’83]

CoQ “Theorems for free" about polymorphic oracles 21/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Unary parametricity for imperative higher-order languages

> Parametricity comes from the type-erasure semantics :
polymorphic values must be handled uniformly.

> Has been proved for a variant of system F with references by
[Ahmed, Dreyer, Birkedal, Rossberg@POPL+LICS'09]
(from seminal works of Appel & co started around 2000).

» Open Conjecture for “CoQ + 77. + OCAML"

CoQ “Theorems for free" about polymorphic oracles 22/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html

Unary parametricity : ML type — 2"d-order invariant

Example
Deriving a while-loop for Coq (in partial correctness)
from a ML oracle such that
ML type of the oracle = usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)

Sep. 2021

Definition wli{S}(cond:S—bool) (body:5S—?7S)(I:S—Prop)
=V s, I s — cond s = true —
V s’, (body s) ~ s’ —=I s’.

| aim to define

while {S} cond body (I: S—Prop | wli cond body I):
V 80, ??{s | (I sO - I s) A cond s = falsel.

Co0Q “Theorems for free" about polymorphic oracles

23/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Polymorphic oracle DIRECTLY computing “while” results

Declaration of the oracle in CoQ

Axiom loop: V {A B}, A x (A — 77 (A+B)) — 77 B.

A — loop invariant i.e. type of “reachable states”
B — post-condition i.e. type of “final states”

Implem. in OCAML

let rec loop (a, step) =
match step a with
| Coq_inl a’ -> loop (a’, step)
| Cog_inr b -> b

Co0Q “Theorems for free" about polymorphic oracles 24/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming)

www-verimag.imag.fr/~boulme/hdr.html

Definition of the while-loop in C0Q

Axiom loop: V {A B},

Ax(A — 7?7 (A+B)) — 7?7 B.

I s = cond s =
V s,

=V s,

Program Definition

fun s =
| true =

s?)
| false =

s)
end) .

Definition wli{S}(cond:S—bool) (body:5S—=77S8)(I:S—Prop)
true —
(body s) ~ s’ —I s°’.

while {S} cond body (I:S—=Prop |
(I sO - I s) A cond s =

7?7{s |
loop (A={s | I sO — I s})
(s0,

match (cond s) with

DO s’ «~ mk_annot (body s) ;;
RET (inl (A={s |

RET (inr (B={s |

wli cond body I) sO
false}

I sO0—-1Is })

(I sO - I s) A cond s = falsel})

Co0Q “Theorems for free" about polymorphic oracles

Sep. 2021

25/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Generalization to impure recursion (e.g. with memoization)

Wrap into a certified recursion operator, any oracle declared as

‘Axiom fixp: V {A B}, ((A — 7?7 B) - A — 77 B) = 77 (A — 77 B).‘

But, formal correctness of recursive functions requires
a relation R between inputs and outputs.
How to encode a binary relation into the “unary postcondition” B?

Solution use in CoQ “(B=answ R)"” where

Record answ {A 0} (R: A — 0 — Prop) = {
input: A ;
output: 0 ;
correct: R input output

}.

+ a defensive check on each recursive result r that
(input r) “equals to" the actual input of the call

Co0Q “Theorems for free" about polymorphic oracles 26/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Such a defensive check is needed...

Because of well-typed oracles such as

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = ref None in
let rec f x =
match !memo with
| Some y -> y

| None ->
let r = step f x in
memo := Some r;
r
in f

=- a memoized fixpoint with “a bug”
crashing all recursive results into a single memory cell.

Defensive check detects this bug...
...and aborts the recursive computation...
...by exception raising (as shown after next slide)

CoQ “Theorems for free" about polymorphic oracles 27/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Any fixp implementation is supported !

Standard fixpoint (pointer equality is sufficient in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let rec f x = step f x in £

Memoized fixpoint (defensive check of Hashtbl.find equality)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = Hashtbl.create 10 in
let rec f x =
try
Hashtbl.find memo x (* if buggy: a wrong ’'b result x)
with
Not_found ->
let r = step f x in
Hashtbl.replace memo x r;
r
in f

See my HDR thesis for details.

CoQ “Theorems for free" about polymorphic oracles 28/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Verification “for free” of higher-order impure operators
» (more adhoc) operators for loops and fixpoints

> Raising and catching exceptions like in

Axiom fail: V {A}, string — 7?7 A.

Definition FAILWITH {A} msg: 77 A =
DO r ¢~ fail (A=False) msg;; RET (match r with end).

Lemma FAILWITH_correct A msg (P:A — Prop):
V r, FAILWITH msg ~ r —P r.

> Polymorphic LCF Style
Design pattern for oracles (example next slide)

CoQ “Theorems for free" about polymorphic oracles 29/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr .html Sep. 2021

Certifying UNSAT proofs of Boolean SAT-solvers

Record resolLCF C := { binary_resolution: C — C — 7?7 C;
get_id: C — clause_id }.
Axiom refute: V {C}, (resolLCF C)*(list C) — ?? C.

where (resolLCF C) is the type of a “Logical Consequences Factory”
by binary resolution on clauses of type C

Application (with T. Vandendorpe)
Redesign of the CoqQ-verified checker

of [Cruz-Filipe+@CADE'17] into SATANSCERT
R R
Certificate (Abstract Syntax) Polymorphic LCF style

CoQ “Theorems for free" about polymorphic oracles 30/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Contents

List of my research projects (from 2012)

List of my research projects (from 2012) 31/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Projects with results covered by my HDR thesis

> VPL [2012-2018]
D. Monniaux and M. Périn (Verimag)
with their Phd students A. Fouilhé and A. Maréchal (Verimag)
+ French ANR VERASCO [2012-2016]
Gallium & Abstraction & Toccata (Inria Paris) ;
Celtique (Irisa Rennes).

> SATANSCERT [June-July 2018]
T. Vandendorpe (UGA Bachelor internship)

» CoMmPCERT for Kalray VLIW [2018-2021]
D. Monniaux (Verimag) and B. Dupont de Dinechin (Kalray)
with our Phd student C. Six (grant CIFRE Kalray-Verimag)
+ Xavier Leroy (Inria - Collége de France).

List of my research projects (from 2012) 32/33


www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html Sep. 2021

Projects uncovered by my HDR thesis

>

CoMPCERT for a secure RiscV with CFI protections [2018-2020]
M-L. Potet and D. Monniaux (Verimag)

with our post-doc P. Torrini (grant of IRT Nanoelec - Pulse)

+ O. Savry, T. Hiscock (CEA LETI)

CoMPCERT Verimag-Kalray student internships [06/19-08/21]
(co-supervized with D. Monniaux and C. Six)

T. Vandendorpe, L. Chelles, J. Fasse, L. Chaloyard, P. Goutagny
and N. Nardino.

CoMPCERT for in-order embedded RiscV cores [10/20-09/23]
F. Pétrot (UGA-TIMA) and D. Monniaux (Verimag)

with our Phd student L. Gourdin (grant of labex Persyval UGA)
+ D. Demange (Irisa Rennes)

COMPCERT front-end for a subset of Rust/MIR [10/21-09/24]

D. Monniaux (Verimag) and F. Wagner (UGA-LIG)

with our Phd student D. Carvalho (grant of IRT Nanoelec - Pulse)
+ TODO?

List of my research projects (from 2012) 33/33


www-verimag.imag.fr/~boulme/hdr.html

	High-level overview of my HDR-thesis contributions
	My interface for foreign OCaml functions in Coq
	Coq ``Theorems for free'' about polymorphic oracles
	List of my research projects (from 2012)

