
Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert : C compilers you can formally trust

March 2020
Sylvain.Boulme@univ-grenoble-alpes.fr

1/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Contents

Certifying compilers

The Coq proof assistant for certifying compilers

Using CompCert

Overview of CompCert Implementation

Certifying compilers 2/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Bug trackers of GCC and LLVM (Sun-et-al@PLDI’16)

The number of attested bugs tends to remain almost constant.
New bugs are introduced when compilers are improved !

Certifying compilers 3/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Miscompilation bugs in most compilers (GCC, LLVM, etc)

Miscompilation bug = incorrect generated code
6= “performance” bug in an optimization.

Unknown miscompilation bugs still remain
as attested by fuzz (ie randomized) differential testing :

Eide-Regehr’08, Yang-et-al’11, Lidbury-et-al’15, Sun-et-al’16...

Why ?

Optimizing compilers are quite large software (in MLoC)
with hundreds of maintainers, e.g :
https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Another fundamental reason :
Tests of optimizing compilers cannot cover all corner cases
because of a combinatorial explosion.

Certifying compilers 4/24

https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Miscompilation bugs in most compilers (GCC, LLVM, etc)

Miscompilation bug = incorrect generated code
6= “performance” bug in an optimization.

Unknown miscompilation bugs still remain
as attested by fuzz (ie randomized) differential testing :

Eide-Regehr’08, Yang-et-al’11, Lidbury-et-al’15, Sun-et-al’16...

Why ?

Optimizing compilers are quite large software (in MLoC)
with hundreds of maintainers, e.g :
https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Another fundamental reason :
Tests of optimizing compilers cannot cover all corner cases
because of a combinatorial explosion.

Certifying compilers 4/24

https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Miscompilation bugs in most compilers (GCC, LLVM, etc)

Miscompilation bug = incorrect generated code
6= “performance” bug in an optimization.

Unknown miscompilation bugs still remain
as attested by fuzz (ie randomized) differential testing :

Eide-Regehr’08, Yang-et-al’11, Lidbury-et-al’15, Sun-et-al’16...

Why ?

Optimizing compilers are quite large software (in MLoC)
with hundreds of maintainers, e.g :
https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Another fundamental reason :
Tests of optimizing compilers cannot cover all corner cases
because of a combinatorial explosion.

Certifying compilers 4/24

https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Miscompilation bugs in most compilers (GCC, LLVM, etc)

Miscompilation bug = incorrect generated code
6= “performance” bug in an optimization.

Unknown miscompilation bugs still remain
as attested by fuzz (ie randomized) differential testing :

Eide-Regehr’08, Yang-et-al’11, Lidbury-et-al’15, Sun-et-al’16...

Why ?

Optimizing compilers are quite large software (in MLoC)
with hundreds of maintainers, e.g :
https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Another fundamental reason :
Tests of optimizing compilers cannot cover all corner cases
because of a combinatorial explosion.

Certifying compilers 4/24

https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Miscompilation bugs in most compilers (GCC, LLVM, etc)

Miscompilation bug = incorrect generated code
6= “performance” bug in an optimization.

Unknown miscompilation bugs still remain
as attested by fuzz (ie randomized) differential testing :

Eide-Regehr’08, Yang-et-al’11, Lidbury-et-al’15, Sun-et-al’16...

Why ?

Optimizing compilers are quite large software (in MLoC)
with hundreds of maintainers, e.g :
https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Another fundamental reason :
Tests of optimizing compilers cannot cover all corner cases
because of a combinatorial explosion.

Certifying compilers 4/24

https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Issue : optimizing compiler for safety-critical software

Strong safety-critical requirements of
DO-178 (Avionics), ISO-26262 (Automotive), IEC-62279 (Railway), IEC-61513 (Nuclear)

often established at the source level...

Used solution
human review of the compiled code ← intractable if optimized
+ switch-off compiler optimizations (DO-178B level A).

Better solution a formally proved compiler
for formal tool qualification (DO-178C + DO-333)...

Certifying compilers 5/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Issue : optimizing compiler for safety-critical software

Strong safety-critical requirements of
DO-178 (Avionics), ISO-26262 (Automotive), IEC-62279 (Railway), IEC-61513 (Nuclear)

often established at the source level...

Used solution
human review of the compiled code

← intractable if optimized
+ switch-off compiler optimizations (DO-178B level A).

Better solution a formally proved compiler
for formal tool qualification (DO-178C + DO-333)...

Certifying compilers 5/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Issue : optimizing compiler for safety-critical software

Strong safety-critical requirements of
DO-178 (Avionics), ISO-26262 (Automotive), IEC-62279 (Railway), IEC-61513 (Nuclear)

often established at the source level...

Used solution
human review of the compiled code ← intractable if optimized

+ switch-off compiler optimizations (DO-178B level A).

Better solution a formally proved compiler
for formal tool qualification (DO-178C + DO-333)...

Certifying compilers 5/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Issue : optimizing compiler for safety-critical software

Strong safety-critical requirements of
DO-178 (Avionics), ISO-26262 (Automotive), IEC-62279 (Railway), IEC-61513 (Nuclear)

often established at the source level...

Used solution
human review of the compiled code ← intractable if optimized
+ switch-off compiler optimizations (DO-178B level A).

Better solution a formally proved compiler
for formal tool qualification (DO-178C + DO-333)...

Certifying compilers 5/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Issue : optimizing compiler for safety-critical software

Strong safety-critical requirements of
DO-178 (Avionics), ISO-26262 (Automotive), IEC-62279 (Railway), IEC-61513 (Nuclear)

often established at the source level...

Used solution
human review of the compiled code ← intractable if optimized
+ switch-off compiler optimizations (DO-178B level A).

Better solution a formally proved compiler
for formal tool qualification (DO-178C + DO-333)...

Certifying compilers 5/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Certified (= formally proved) compiler

Diagrammatic view
of the correctness

Source

Target Behaviors

Compiler

Compiler correctness reduced to that of its formal spec.

Advantages of formal spec over compiler code
I closer to informal spec (e.g. simpler for human reviews)
I more compositional (e.g. simpler for tests)

Another benefit : traceability
formal proof = computer-aided review of the compiler code w.r.t its spec.
⇒ up-to-date & very sharp (formal) documentation of the compiler

that may also help “external developers”

Certifying compilers 6/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Certified (= formally proved) compiler

Diagrammatic view
of the correctness

Source

Target Behaviors

Compiler

Compiler correctness reduced to that of its formal spec.

Advantages of formal spec over compiler code
I closer to informal spec (e.g. simpler for human reviews)
I more compositional (e.g. simpler for tests)

Another benefit : traceability
formal proof = computer-aided review of the compiler code w.r.t its spec.
⇒ up-to-date & very sharp (formal) documentation of the compiler

that may also help “external developers”

Certifying compilers 6/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Certified (= formally proved) compiler

Diagrammatic view
of the correctness

Source

Target Behaviors

Compiler

Compiler correctness reduced to that of its formal spec.

Advantages of formal spec over compiler code
I closer to informal spec (e.g. simpler for human reviews)
I more compositional (e.g. simpler for tests)

Another benefit : traceability
formal proof = computer-aided review of the compiler code w.r.t its spec.

⇒ up-to-date & very sharp (formal) documentation of the compiler
that may also help “external developers”

Certifying compilers 6/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Certified (= formally proved) compiler

Diagrammatic view
of the correctness

Source

Target Behaviors

Compiler

Compiler correctness reduced to that of its formal spec.

Advantages of formal spec over compiler code
I closer to informal spec (e.g. simpler for human reviews)
I more compositional (e.g. simpler for tests)

Another benefit : traceability
formal proof = computer-aided review of the compiler code w.r.t its spec.
⇒ up-to-date & very sharp (formal) documentation of the compiler

that may also help “external developers”

Certifying compilers 6/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert : a certified compiler

CompCert = a moderately-optimizing C compiler
with an unprecedented level of trust in its correctness

as noted by Yang-et-al’11 (with randomized differential testing) :
“CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of
trying : we have devoted about six CPU-years to the task.
[. . .] developing compiler optimizations within a proof framework
[. . .] has tangible benefits for compiler users.”

Part of an ongoing effort to certify a whole software chain in
the Coq proof assistant

from the prover (e.g. CertiCoq) to OS kernels (e.g. CertiKOS)
Example http://deepspec.org (supported by NSF).

Certifying compilers 7/24

http://deepspec.org

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert : a certified compiler

CompCert = a moderately-optimizing C compiler
with an unprecedented level of trust in its correctness
as noted by Yang-et-al’11 (with randomized differential testing) :

“CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of
trying : we have devoted about six CPU-years to the task.
[. . .] developing compiler optimizations within a proof framework
[. . .] has tangible benefits for compiler users.”

Part of an ongoing effort to certify a whole software chain in
the Coq proof assistant

from the prover (e.g. CertiCoq) to OS kernels (e.g. CertiKOS)
Example http://deepspec.org (supported by NSF).

Certifying compilers 7/24

http://deepspec.org

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert : a certified compiler

CompCert = a moderately-optimizing C compiler
with an unprecedented level of trust in its correctness
as noted by Yang-et-al’11 (with randomized differential testing) :

“CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of
trying : we have devoted about six CPU-years to the task.
[. . .] developing compiler optimizations within a proof framework
[. . .] has tangible benefits for compiler users.”

Part of an ongoing effort to certify a whole software chain in
the Coq proof assistant

from the prover (e.g. CertiCoq) to OS kernels (e.g. CertiKOS)
Example http://deepspec.org (supported by NSF).

Certifying compilers 7/24

http://deepspec.org

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Contents

Certifying compilers

The Coq proof assistant for certifying compilers

Using CompCert

Overview of CompCert Implementation

The Coq proof assistant for certifying compilers 8/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The Coq proof assistant
A language to formalize mathematical theories (and their
proofs) with a computer. Examples :

• Four-color & Odd-order theorems by Gonthier-et-al.
• Univalence theory by Voevodsky (Fields Medalist).

With a high-level of confidence :
• Logic reduced to a few powerful constructs ;

Proofs checked by a small verifiable kernel
• Consistency-by-construction of most user theories

(promotes definitions instead of axioms)

ACM Software System Award in 2013
for Coquand, Huet, Paulin-Mohring et al.

Results from a long history in formalizing mathematical reasonning
since Frege, Russel, Hilbert near 1900.

The Coq proof assistant for certifying compilers 9/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The Coq proof assistant
A language to formalize mathematical theories (and their
proofs) with a computer. Examples :

• Four-color & Odd-order theorems by Gonthier-et-al.
• Univalence theory by Voevodsky (Fields Medalist).

With a high-level of confidence :
• Logic reduced to a few powerful constructs ;

Proofs checked by a small verifiable kernel
• Consistency-by-construction of most user theories

(promotes definitions instead of axioms)

ACM Software System Award in 2013
for Coquand, Huet, Paulin-Mohring et al.

Results from a long history in formalizing mathematical reasonning
since Frege, Russel, Hilbert near 1900.

The Coq proof assistant for certifying compilers 9/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The Coq proof assistant
A language to formalize mathematical theories (and their
proofs) with a computer. Examples :

• Four-color & Odd-order theorems by Gonthier-et-al.
• Univalence theory by Voevodsky (Fields Medalist).

With a high-level of confidence :
• Logic reduced to a few powerful constructs ;

Proofs checked by a small verifiable kernel
• Consistency-by-construction of most user theories

(promotes definitions instead of axioms)

ACM Software System Award in 2013
for Coquand, Huet, Paulin-Mohring et al.

Results from a long history in formalizing mathematical reasonning
since Frege, Russel, Hilbert near 1900.

The Coq proof assistant for certifying compilers 9/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The Coq proof assistant
A language to formalize mathematical theories (and their
proofs) with a computer. Examples :

• Four-color & Odd-order theorems by Gonthier-et-al.
• Univalence theory by Voevodsky (Fields Medalist).

With a high-level of confidence :
• Logic reduced to a few powerful constructs ;

Proofs checked by a small verifiable kernel
• Consistency-by-construction of most user theories

(promotes definitions instead of axioms)

ACM Software System Award in 2013
for Coquand, Huet, Paulin-Mohring et al.

Results from a long history in formalizing mathematical reasonning
since Frege, Russel, Hilbert near 1900.

The Coq proof assistant for certifying compilers 9/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Formally proved programs in the Coq proof assistant

The Coq logic includes a functional programming language
with pattern-matching on tree-like data-structures.

Extraction of Coq functions to OCaml
+ OCaml compilation to produce native code.

⇒ CompCert is programmed in both Coq and OCaml.

The Coq proof assistant for certifying compilers 10/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (1/2)
A typed programming language, only handling data of the form
• inductive data (tree-like data)
• (pure) functions (with structural recursion)
• types, where Type i is the type of Type j with j < i

Example where Z in Type0 is the type of relative integers
Inductive nat: Type := O | S(n:nat). (* defines natural numbers *)

Fixpoint plus (n m:nat): nat := (* defines n+m recursively *)
match n with O => m | (S n ’) => (S (plus n’ m)) end.

(* Type of tuples containing (S n) values in Z *)
Fixpoint tuple_S (n:nat): Type :=

match n with O => Z | S n’ => Z * (tuple_S n ’) end.

(* Concatenation operation of such tuples *)
Fixpoint app (n m:nat):(tuple_S n)->((tuple_S m)->(tuple_S (S (plus n m)))) :=

match n with
O => fun t1 t2 => (t1 , t2)

| S n’ => fun t1 t2 => let (x,t1 ’) := t1 in (x, app n’ m t1 ’ t2)
end.

Decidable typechecking with computations in types !
Only structural recursion is allowed ⇒ all computations terminates.

The Coq proof assistant for certifying compilers 11/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (1/2)
A typed programming language, only handling data of the form
• inductive data (tree-like data)
• (pure) functions (with structural recursion)
• types, where Type i is the type of Type j with j < i
Example where Z in Type0 is the type of relative integers
Inductive nat: Type := O | S(n:nat). (* defines natural numbers *)

Fixpoint plus (n m:nat): nat := (* defines n+m recursively *)
match n with O => m | (S n ’) => (S (plus n’ m)) end.

(* Type of tuples containing (S n) values in Z *)
Fixpoint tuple_S (n:nat): Type :=

match n with O => Z | S n’ => Z * (tuple_S n ’) end.

(* Concatenation operation of such tuples *)
Fixpoint app (n m:nat):(tuple_S n)->((tuple_S m)->(tuple_S (S (plus n m)))) :=

match n with
O => fun t1 t2 => (t1 , t2)

| S n’ => fun t1 t2 => let (x,t1 ’) := t1 in (x, app n’ m t1 ’ t2)
end.

Decidable typechecking with computations in types !
Only structural recursion is allowed ⇒ all computations terminates.

The Coq proof assistant for certifying compilers 11/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (1/2)
A typed programming language, only handling data of the form
• inductive data (tree-like data)
• (pure) functions (with structural recursion)
• types, where Type i is the type of Type j with j < i
Example where Z in Type0 is the type of relative integers
Inductive nat: Type := O | S(n:nat). (* defines natural numbers *)

Fixpoint plus (n m:nat): nat := (* defines n+m recursively *)
match n with O => m | (S n ’) => (S (plus n’ m)) end.

(* Type of tuples containing (S n) values in Z *)
Fixpoint tuple_S (n:nat): Type :=

match n with O => Z | S n’ => Z * (tuple_S n ’) end.

(* Concatenation operation of such tuples *)
Fixpoint app (n m:nat):(tuple_S n)->((tuple_S m)->(tuple_S (S (plus n m)))) :=

match n with
O => fun t1 t2 => (t1 , t2)

| S n’ => fun t1 t2 => let (x,t1 ’) := t1 in (x, app n’ m t1 ’ t2)
end.

Decidable typechecking with computations in types !
Only structural recursion is allowed ⇒ all computations terminates.

The Coq proof assistant for certifying compilers 11/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (2/2)

Type of app :
forall (n m:nat), tuple_S n -> tuple_S m -> tuple_S (S (plus n m))

More generally, forall (x : A) , (P x)
is the type of functions fun (x : A) => e where e : (P x).

NB : A −> B is forall (x : A) , B when x not occurring in B.

Typing rule : when A : Type (with restrictions) and P : A−>Type i
then forall (x : A) , (P x) in Type i

The Coq proof assistant for certifying compilers 12/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (2/2)

Type of app :
forall (n m:nat), tuple_S n -> tuple_S m -> tuple_S (S (plus n m))

More generally, forall (x : A) , (P x)
is the type of functions fun (x : A) => e where e : (P x).

NB : A −> B is forall (x : A) , B when x not occurring in B.

Typing rule : when A : Type (with restrictions) and P : A−>Type i
then forall (x : A) , (P x) in Type i

The Coq proof assistant for certifying compilers 12/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (2/2)

Type of app :
forall (n m:nat), tuple_S n -> tuple_S m -> tuple_S (S (plus n m))

More generally, forall (x : A) , (P x)
is the type of functions fun (x : A) => e where e : (P x).

NB : A −> B is forall (x : A) , B when x not occurring in B.

Typing rule : when A : Type (with restrictions) and P : A−>Type i
then forall (x : A) , (P x) in Type i

The Coq proof assistant for certifying compilers 12/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

The kernel of Coq in a nutshell (2/2)

Type of app :
forall (n m:nat), tuple_S n -> tuple_S m -> tuple_S (S (plus n m))

More generally, forall (x : A) , (P x)
is the type of functions fun (x : A) => e where e : (P x).

NB : A −> B is forall (x : A) , B when x not occurring in B.

Typing rule : when A : Type (with restrictions) and P : A−>Type i
then forall (x : A) , (P x) in Type i

The Coq proof assistant for certifying compilers 12/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Propositions as types (Curry-Howard isomorphism)
Prop in Type1 represents the type of logical propositions :

Coq proofs are values in types of Prop

For A : Prop and B : Prop, A−>B is read
“proposition A implies proposition B”

A function in A−>B is a proof of this proposition.

Similarly, for A : Type and P : A−>Prop,
forall (x : A) , (P x) is read “for all x : A, (P x)”

A function in forall (x : A) , (P x) is a proof of this proposition.

All logical features (including logical connectors, equality,
well-founded induction) are built from the Coq kernel.

Gives a subset of classical logic called intuitionistic logic.
Classical logic recovered with a few additional axioms like
Axiom excluded_middle : forall (A: Prop), A \/ (A -> False).

The Coq proof assistant for certifying compilers 13/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Propositions as types (Curry-Howard isomorphism)
Prop in Type1 represents the type of logical propositions :

Coq proofs are values in types of Prop

For A : Prop and B : Prop, A−>B is read
“proposition A implies proposition B”

A function in A−>B is a proof of this proposition.

Similarly, for A : Type and P : A−>Prop,
forall (x : A) , (P x) is read “for all x : A, (P x)”

A function in forall (x : A) , (P x) is a proof of this proposition.

All logical features (including logical connectors, equality,
well-founded induction) are built from the Coq kernel.

Gives a subset of classical logic called intuitionistic logic.
Classical logic recovered with a few additional axioms like
Axiom excluded_middle : forall (A: Prop), A \/ (A -> False).

The Coq proof assistant for certifying compilers 13/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Propositions as types (Curry-Howard isomorphism)
Prop in Type1 represents the type of logical propositions :

Coq proofs are values in types of Prop

For A : Prop and B : Prop, A−>B is read
“proposition A implies proposition B”

A function in A−>B is a proof of this proposition.

Similarly, for A : Type and P : A−>Prop,
forall (x : A) , (P x) is read “for all x : A, (P x)”

A function in forall (x : A) , (P x) is a proof of this proposition.

All logical features (including logical connectors, equality,
well-founded induction) are built from the Coq kernel.

Gives a subset of classical logic called intuitionistic logic.
Classical logic recovered with a few additional axioms like
Axiom excluded_middle : forall (A: Prop), A \/ (A -> False).

The Coq proof assistant for certifying compilers 13/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Propositions as types (Curry-Howard isomorphism)
Prop in Type1 represents the type of logical propositions :

Coq proofs are values in types of Prop

For A : Prop and B : Prop, A−>B is read
“proposition A implies proposition B”

A function in A−>B is a proof of this proposition.

Similarly, for A : Type and P : A−>Prop,
forall (x : A) , (P x) is read “for all x : A, (P x)”

A function in forall (x : A) , (P x) is a proof of this proposition.

All logical features (including logical connectors, equality,
well-founded induction) are built from the Coq kernel.

Gives a subset of classical logic called intuitionistic logic.
Classical logic recovered with a few additional axioms like
Axiom excluded_middle : forall (A: Prop), A \/ (A -> False).

The Coq proof assistant for certifying compilers 13/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Propositions as types (Curry-Howard isomorphism)
Prop in Type1 represents the type of logical propositions :

Coq proofs are values in types of Prop

For A : Prop and B : Prop, A−>B is read
“proposition A implies proposition B”

A function in A−>B is a proof of this proposition.

Similarly, for A : Type and P : A−>Prop,
forall (x : A) , (P x) is read “for all x : A, (P x)”

A function in forall (x : A) , (P x) is a proof of this proposition.

All logical features (including logical connectors, equality,
well-founded induction) are built from the Coq kernel.

Gives a subset of classical logic called intuitionistic logic.
Classical logic recovered with a few additional axioms like
Axiom excluded_middle : forall (A: Prop), A \/ (A -> False).

The Coq proof assistant for certifying compilers 13/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

A flavour of certifying compilers in Coq

CompCert proof is huge (> 100Kloc of Coq).

Follow this link to have a simpler example :
http://www-verimag.imag.fr/˜boulme/IntroCompCert/DemoCoq/

The Coq proof assistant for certifying compilers 14/24

http://www-verimag.imag.fr/~boulme/IntroCompCert/DemoCoq/

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Contents

Certifying compilers

The Coq proof assistant for certifying compilers

Using CompCert

Overview of CompCert Implementation

Using CompCert 15/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Overview of CompCert
Input most of ISO C99 + a few extensions
Output (32&64 bits) code for PowerPC, ARM, x86, RISC-V,
Kalray K1C

Developed since 2005 by Leroy-et-al at Inria
Commercial support since 2015 by AbsInt (German Company)
Industrial uses in Avionics (Airbus) & Nuclear Plants (MTU)

Unequaled level of trust for industrial-scaling compilers
Correctness proved within the Coq proof assistant

Performance of generated code (for PowerPC and ARM)
2× faster than gcc -O0
10% slower than gcc -O1 and 20% than gcc -O3.

In MTU systems (German provider of Nuclear Power Plants)
28% smaller WCET than with a previous unverified compiler.

Using CompCert 16/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Overview of CompCert
Input most of ISO C99 + a few extensions
Output (32&64 bits) code for PowerPC, ARM, x86, RISC-V,
Kalray K1C

Developed since 2005 by Leroy-et-al at Inria
Commercial support since 2015 by AbsInt (German Company)
Industrial uses in Avionics (Airbus) & Nuclear Plants (MTU)

Unequaled level of trust for industrial-scaling compilers
Correctness proved within the Coq proof assistant

Performance of generated code (for PowerPC and ARM)
2× faster than gcc -O0
10% slower than gcc -O1 and 20% than gcc -O3.

In MTU systems (German provider of Nuclear Power Plants)
28% smaller WCET than with a previous unverified compiler.

Using CompCert 16/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Overview of CompCert
Input most of ISO C99 + a few extensions
Output (32&64 bits) code for PowerPC, ARM, x86, RISC-V,
Kalray K1C

Developed since 2005 by Leroy-et-al at Inria
Commercial support since 2015 by AbsInt (German Company)
Industrial uses in Avionics (Airbus) & Nuclear Plants (MTU)

Unequaled level of trust for industrial-scaling compilers
Correctness proved within the Coq proof assistant

Performance of generated code (for PowerPC and ARM)
2× faster than gcc -O0
10% slower than gcc -O1 and 20% than gcc -O3.

In MTU systems (German provider of Nuclear Power Plants)
28% smaller WCET than with a previous unverified compiler.

Using CompCert 16/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Overview of CompCert
Input most of ISO C99 + a few extensions
Output (32&64 bits) code for PowerPC, ARM, x86, RISC-V,
Kalray K1C

Developed since 2005 by Leroy-et-al at Inria
Commercial support since 2015 by AbsInt (German Company)
Industrial uses in Avionics (Airbus) & Nuclear Plants (MTU)

Unequaled level of trust for industrial-scaling compilers
Correctness proved within the Coq proof assistant

Performance of generated code (for PowerPC and ARM)
2× faster than gcc -O0
10% slower than gcc -O1 and 20% than gcc -O3.

In MTU systems (German provider of Nuclear Power Plants)
28% smaller WCET than with a previous unverified compiler.

Using CompCert 16/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Understanding the formal correctness of CompCert
Formally, correctness of compiled code is ensured modulo
• correctness of C formal semantics in Coq
• correctness of assembly formal semantics in Coq
• absence of undefined behavior in the source program

Formal semantics ' relation between “programs” and “behaviors”
i.e. a (possibly non-deterministic) interpretation of programs

for C : formalization of ISO C99 standard
for assembly : formalization/abstraction of ISA

Source program assumed to be without undefined behavior
int x, t[10] , y;
...
if (...) {

t [10]=1; // undefined behavior : out of bounds
// the compiler could write in x or y,
// or prune the branch as dead -code , ...

Using CompCert 17/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Understanding the formal correctness of CompCert
Formally, correctness of compiled code is ensured modulo
• correctness of C formal semantics in Coq
• correctness of assembly formal semantics in Coq
• absence of undefined behavior in the source program

Formal semantics ' relation between “programs” and “behaviors”
i.e. a (possibly non-deterministic) interpretation of programs

for C : formalization of ISO C99 standard
for assembly : formalization/abstraction of ISA

Source program assumed to be without undefined behavior
int x, t[10] , y;
...
if (...) {

t [10]=1; // undefined behavior : out of bounds
// the compiler could write in x or y,
// or prune the branch as dead -code , ...

Using CompCert 17/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Understanding the formal correctness of CompCert
Formally, correctness of compiled code is ensured modulo
• correctness of C formal semantics in Coq
• correctness of assembly formal semantics in Coq
• absence of undefined behavior in the source program

Formal semantics ' relation between “programs” and “behaviors”
i.e. a (possibly non-deterministic) interpretation of programs

for C : formalization of ISO C99 standard
for assembly : formalization/abstraction of ISA

Source program assumed to be without undefined behavior
int x, t[10] , y;
...
if (...) {

t [10]=1; // undefined behavior : out of bounds
// the compiler could write in x or y,
// or prune the branch as dead -code , ...

Using CompCert 17/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Informal view of CompCert formal correctness
Observable Value = int or float or address of global variable

Trace = a sequence of external function calls (or volatile accesses)
each of the form “f (v1, . . . , vn) 7→ v” where f is name

Behavior = one of the four possible cases (of an execution) :
an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.
Correctness of the compiler

For any source program S,
if S has no UNDEFINED-BEHAVIOR,
and if the compiler returns some assembly program C ,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.

Using CompCert 18/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Informal view of CompCert formal correctness
Observable Value = int or float or address of global variable
Trace = a sequence of external function calls (or volatile accesses)

each of the form “f (v1, . . . , vn) 7→ v” where f is name

Behavior = one of the four possible cases (of an execution) :
an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.
Correctness of the compiler

For any source program S,
if S has no UNDEFINED-BEHAVIOR,
and if the compiler returns some assembly program C ,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.

Using CompCert 18/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Informal view of CompCert formal correctness
Observable Value = int or float or address of global variable
Trace = a sequence of external function calls (or volatile accesses)

each of the form “f (v1, . . . , vn) 7→ v” where f is name
Behavior = one of the four possible cases (of an execution) :

an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.
Correctness of the compiler

For any source program S,
if S has no UNDEFINED-BEHAVIOR,
and if the compiler returns some assembly program C ,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.

Using CompCert 18/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Informal view of CompCert formal correctness
Observable Value = int or float or address of global variable
Trace = a sequence of external function calls (or volatile accesses)

each of the form “f (v1, . . . , vn) 7→ v” where f is name
Behavior = one of the four possible cases (of an execution) :

an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.

Correctness of the compiler
For any source program S,
if S has no UNDEFINED-BEHAVIOR,
and if the compiler returns some assembly program C ,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.

Using CompCert 18/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Informal view of CompCert formal correctness
Observable Value = int or float or address of global variable
Trace = a sequence of external function calls (or volatile accesses)

each of the form “f (v1, . . . , vn) 7→ v” where f is name
Behavior = one of the four possible cases (of an execution) :

an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.
Correctness of the compiler

For any source program S,
if S has no UNDEFINED-BEHAVIOR,
and if the compiler returns some assembly program C ,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.

Using CompCert 18/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Informal view of CompCert formal correctness
Observable Value = int or float or address of global variable
Trace = a sequence of external function calls (or volatile accesses)

each of the form “f (v1, . . . , vn) 7→ v” where f is name
Behavior = one of the four possible cases (of an execution) :

an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.
Correctness of the compiler

For any source program S,
if S has no UNDEFINED-BEHAVIOR,
and if the compiler returns some assembly program C ,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.
Using CompCert 18/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Trust in ELF binaries produced with CompCert
Trust in binaries requires additional verifications, at least :
I absence of undefined behavior in C code (e.g. with Astrée)
I correctness of assembling/linking (e.g. with Valex)

Qualification of MTU development chain for Nuclear safety
from Käster, Barrho et al @ERTS’18

Using CompCert 19/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Trust in ELF binaries produced with CompCert
Trust in binaries requires additional verifications, at least :
I absence of undefined behavior in C code (e.g. with Astrée)
I correctness of assembling/linking (e.g. with Valex)

Qualification of MTU development chain for Nuclear safety
from Käster, Barrho et al @ERTS’18

Using CompCert 19/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Contents

Certifying compilers

The Coq proof assistant for certifying compilers

Using CompCert

Overview of CompCert Implementation

Overview of CompCert Implementation 20/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert’s model of Intermediate Representations

Definition The transition semantics (of a program) is defined – on
a given type of states – by :
• a subset of initial states (i.e. at “main” entry-point) ;
• a subset of final states (i.e. at “returns” of “main”) ;
• a step relation written S t−→ S ′
with t being either one observable event or ε (i.e. “silent” step).

Behavior = trace produced by a maximal sequence of steps from
an initial state

4 kind of behaviors recovered by :
• infinite sequence with a finite or infinite trace
• finite sequence ended on a final state
• finite sequence ended on a non-final state (stuck)
⇒ UNDEFINED-BEHAVIOR

Overview of CompCert Implementation 21/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert’s model of Intermediate Representations

Definition The transition semantics (of a program) is defined – on
a given type of states – by :
• a subset of initial states (i.e. at “main” entry-point) ;
• a subset of final states (i.e. at “returns” of “main”) ;
• a step relation written S t−→ S ′
with t being either one observable event or ε (i.e. “silent” step).

Behavior = trace produced by a maximal sequence of steps from
an initial state

4 kind of behaviors recovered by :
• infinite sequence with a finite or infinite trace
• finite sequence ended on a final state
• finite sequence ended on a non-final state (stuck)
⇒ UNDEFINED-BEHAVIOR

Overview of CompCert Implementation 21/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

CompCert’s model of Intermediate Representations

Definition The transition semantics (of a program) is defined – on
a given type of states – by :
• a subset of initial states (i.e. at “main” entry-point) ;
• a subset of final states (i.e. at “returns” of “main”) ;
• a step relation written S t−→ S ′
with t being either one observable event or ε (i.e. “silent” step).

Behavior = trace produced by a maximal sequence of steps from
an initial state

4 kind of behaviors recovered by :
• infinite sequence with a finite or infinite trace
• finite sequence ended on a final state
• finite sequence ended on a non-final state (stuck)
⇒ UNDEFINED-BEHAVIOR

Overview of CompCert Implementation 21/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Certifying compilation passes in CompCert

Theorem : correctness of forward simulations
The correctness of a pass between a source semantics on S1
to a deterministic target semantics on S2,
can be proved by a simulation relation S1 ∼ S2 that :
• is established on initial states
• preserves final states
• and execution steps with :

S1 S2

S ′1 S ′2

∼

t t +
∼

or

S1 S2

S ′1

∼

ε
∼

with |S ′1| < |S1|

NB : condition |S ′
1| < |S1| ensures preservation of infinite silent loops.

Overview of CompCert Implementation 22/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Untrusted Oracles in CompCert

Principle : delegate computations to efficient OCaml functions
without having to prove them !
⇒ only a checker of the result is verified

i.e. verified defensive programming

Example of register allocation – a NP-complete problem
(related to a graph-coloring problem)
• finding a correct and efficient allocation is difficult
• verifying the correctness of an allocation is easy
⇒ only “allocation checking” is verified in Coq

Benefits of untrusted oracles
simplicity + efficiency + modularity

Overview of CompCert Implementation 23/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Untrusted Oracles in CompCert

Principle : delegate computations to efficient OCaml functions
without having to prove them !
⇒ only a checker of the result is verified

i.e. verified defensive programming

Example of register allocation – a NP-complete problem
(related to a graph-coloring problem)
• finding a correct and efficient allocation is difficult
• verifying the correctness of an allocation is easy
⇒ only “allocation checking” is verified in Coq

Benefits of untrusted oracles
simplicity + efficiency + modularity

Overview of CompCert Implementation 23/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Untrusted Oracles in CompCert

Principle : delegate computations to efficient OCaml functions
without having to prove them !
⇒ only a checker of the result is verified

i.e. verified defensive programming

Example of register allocation – a NP-complete problem
(related to a graph-coloring problem)
• finding a correct and efficient allocation is difficult
• verifying the correctness of an allocation is easy
⇒ only “allocation checking” is verified in Coq

Benefits of untrusted oracles
simplicity + efficiency + modularity

Overview of CompCert Implementation 23/24

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Modular design of CompCert in Coq

Components independent/parametrized/specific w.r.t. the target

CompCert C Clight C#minor Cminor

CminorSelRTLLTLLinear

Mach Asm

side-effects apart
from expressions

type elimination
loop simplification stack allocation

of variables

instruction
selectionCFG

construction
register

allocation

CFG optimizations

linearization
of CFG

branch tunnelinglayout of
stackframes

assembly
code generation

Demo on a mini example for x86-64 target at this link :
http://www-verimag.imag.fr/˜boulme/IntroCompCert/DemoCompCert/

Overview of CompCert Implementation 24/24

http://www-verimag.imag.fr/~boulme/IntroCompCert/DemoCompCert/

Introduction to the CompCert Certified Compiler S. Boulmé – March 2020

Modular design of CompCert in Coq

Components independent/parametrized/specific w.r.t. the target

CompCert C Clight C#minor Cminor

CminorSelRTLLTLLinear

Mach Asm

side-effects apart
from expressions

type elimination
loop simplification stack allocation

of variables

instruction
selectionCFG

construction
register

allocation

CFG optimizations

linearization
of CFG

branch tunnelinglayout of
stackframes

assembly
code generation

Demo on a mini example for x86-64 target at this link :
http://www-verimag.imag.fr/˜boulme/IntroCompCert/DemoCompCert/

Overview of CompCert Implementation 24/24

http://www-verimag.imag.fr/~boulme/IntroCompCert/DemoCompCert/

	Certifying compilers
	The Coq proof assistant for certifying compilers
	Using CompCert
	Overview of CompCert Implementation

