Introduction to the COMPCERT Certified Compiler S. Boulmé& — March 2020Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Contents
CoMPCERT : C compilers you can formally trust Certifying compilers
March 2020
Sylvain.Boulme@univ-grenoble-alpes.fr
1/24 | Certifying compilers 2/24
Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020[Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Bug trackers of GCC and LLVM (Sun-et-al@PLDI'16) Miscompilation bugs in most compilers (GCC, LLVM, etc)

Miscompilation bug = incorrect generated code
#+ “performance” bug in an optimization.

new
fixed

“=- rejected 1
100 | — unconfirmed |4

Number of Bugs

] Unknown miscompilation bugs still remain
as attested by fuzz (ie randomized) differential testing :
Eide-Regehr'08, Yang-et-al'll, Lidbury-et-al'15, Sun-et-al’'16...

100

- fixed
W00[---s rejected [
— unconfirmed | |

Why ?

Number of Bugs

Optimizing compilers are quite large software (in MLoC)
with hundreds of maintainers, e.g :
(o https://github.com/gcc-mirror/gcc/blob/master/MAINTAINERS

Another fundamental reason :
Tests of optimizing compilers cannot cover all corner cases
because of a combinatorial explosion.

The number of attested bugs tends to remain almost constant.
New bugs are introduced when compilers are improved !

Certifying compilers 3/24 | Certifying compilers 4/24

Introduction to the COMPCERT Certified Compiler

Issue : optimizing compiler for safety-critical software

Strong safety-critical requirements of
DO-178 (Avionics), ISO-26262 (Automotive), IEC-62279 (Railway), IEC-61513 (Nuclear)
often established at the source level...

Used solution
human review of the compiled code <+ intractable if optimized
+ switch-off compiler optimizations (DO-178B level A).

Better solution a formally proved compiler
for formal tool qualification (DO-178C + DO-333)...

Certifying compilers

S. Boulmé — March 2020

5/24

[ntroduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Certified (= formally proved) compiler

Source
~

~

Diagrammatic view Compiler

of the correctness N

Sa

Target «——— Behaviors

Compiler correctness reduced to that of its formal spec.

Advantages of formal spec over compiler code
» closer to informal spec (e.g. simpler for human reviews)

» more compositional (e.g. simpler for tests)

Another benefit : traceability

formal proof = computer-aided review of the compiler code w.r.t its spec.

= up-to-date & very sharp (formal) documentation of the compiler
that may also help “external developers”

Certifying compilers 6/24
S. Boulmé — March 2020

Introduction to the COMPCERT Certified Compiler

CoMPCERT : a certified compiler

CoOMPCERT = a moderately-optimizing C compiler

with an unprecedented level of trust in its correctness

as noted by Yang-et-al'll (with randomized differential testing) :
“COMPCERT is the only compiler we have tested for which
CSMITH cannot find wrong-code errors. This is not for lack of
trying : we have devoted about six CPU-years to the task.
[...] developing compiler optimizations within a proof framework
[...] has tangible benefits for compiler users.”

Part of an ongoing effort to certify a whole software chain in
the CoQ proof assistant

from the prover (e.g. CertiCoq) to OS kernels (e.g. CertiKOS)
Example http://deepspec.org (supported by NSF).

Certifying compilers

S. Boulmé — March 2020

[ntroduction to the COMPCERT Certified Compiler

Contents

The CoQ proof assistant for certifying compilers

7/24

The CoQ proof assistant for certifying compilers 8/24

Introduction to the COMPCERT Certified Compiler

The CoQ proof assistant

A language to formalize mathematical theories (and their
proofs) with a computer. Examples :

e Four-color & Odd-order theorems by Gonthier-et-al.
e Univalence theory by Voevodsky (Fields Medalist).

With a high-level of confidence :

e Logic reduced to a few powerful constructs;
Proofs checked by a small verifiable kernel

e Consistency-by-construction of most user theories
(promotes definitions instead of azioms)

ACM Software System Award in 2013
for Coquand, Huet, Paulin-Mohring et al.

Results from a long history in formalizing mathematical reasonning
since Frege, Russel, Hilbert near 1900.

The CoQ proof assistant for certifying compilers

S. Boulmé — March 2020

[ntroduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Formally proved programs in the COQ proof assistant

The CoQ logic includes a functional programming language
with pattern-matching on tree-like data-structures.

Extraction of CoQ functions to OCAML
+ OCAML compilation to produce native code.

= CompCert is programmed in both Coq and OCaml.

The CoQ proof assistant for certifying compilers

Introduction to the COMPCERT Certified Compiler

The kernel of CoqQ in a nutshell (1/2)

A typed programming language, only handling data of the form
e inductive data (tree-like data)

e (pure) functions (with structural recursion)

e types, where Type; is the type of Type; with j </

Example where z in Typeg is the type of relative integers

Inductive nat: Type := 0 | S(n:nat). (* defines natural numbers *)
Fixpoint plus (n m:nat): nat := (* defines n+m recursively *)

match n with 0 => m | (S n’) => (S (plus n’ m)) end.

(* Type of tuples containing (S n) walues in Z *)
Fixpoint tuple_S (m:nat): Type :=
match n with 0 => Z | S n’> => Z * (tuple_S n’) end.

(* Concatenation operation of such tuples *)
Fixpoint app (n m:nat):(tuple_S n)->((tuple_S m)->(tuple_S (S (plus n m)))) :=
match n with
0 => fun t1 t2 => (t1, t2)
| S n’ => fun t1 t2 => let (x,tl’) :=
end .

t1 in (x, app n’ m t1’ t2)

Decidable typechecking with computations in types!
Only structural recursion is allowed = all computations terminates.

The Coq proof assistant for certifying compilers

9/24
S. Boulmé — March 2020

11/24

10/24
Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

The kernel of CoQ in a nutshell (2/2)

Type of app -

forall (n m:nat), tuple_S n -> tuple_S m -> tuple_S(S (plus n m))

More generally, forall (x:4),(P x)

is the type of functions fun(x:4) => e where e:(P x).

NB: a1 —>38 is forall (x:4),B when x not occurring in B.

Typing rule : when A:Type (with restrictions) and P: A—>Type;

then forall (x:A),(P x) in Type;j

The CoQ proof assistant for certifying compilers 12/24

Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020]Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Propositions as types (Curry-Howard isomorphism) A flavour of certifying compilers in CoQ

Prop iN Type] represents the type of logical propositions :
CoqQ proofs are values in types of Prop

For A:Prop and B:Prop, A—>B is read
“proposition 4 implies proposition 8" CoMPCERT proof is huge (> 100Kloc of C0Q).

A function in a—>B is a proof of this proposition.

Similarly, for a:Type and p:a—>Prop,
forall (x:A),(P x) isread “forall z:a, (P z)"

A function in forall (A) (P is a proof of this proposition. - .
erall (x:4),(P x) p prop Follow this link to have a simpler example :

All logical features (including logical connectors, equality, http://www-verimag. imag.fr/~boulme/IntroCompCert/DemoCoq/
well-founded induction) are built from the CoQ kernel.

Gives a subset of classical logic called intuitionistic logic.
Classical logic recovered with a few additional axioms like

Axiom excluded_middle: forall (A:Prop), A \/ (A -> False).

The CoQ proof assistant for certifying compilers 13/24 | The CoQ proof assistant for certifying compilers 14/24
Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020
Contents Overview of COMPCERT

Input most of ISO C99 + a few extensions
Output (32&64 bits) code for PowerPC, ARM, x86, RISC-V,
Kalray K1C

Developed since 2005 by Leroy-et-al at Inria
Commercial support since 2015 by AbsInt (German Company)
Industrial uses in Avionics (Airbus) & Nuclear Plants (MTU)

Unequaled level of trust for industrial-scaling compilers
Using CoMPCERT Correctness proved within the CoQ proof assistant
Performance of generated code (for PowerPC and ARM)
2x faster than gcc -00
10% slower than gcc -01 and 20% than gcc -03.

In MTU systems (German provider of Nuclear Power Plants)
28% smaller WCET than with a previous unverified compiler.

Using CoMPCERT 15/24 | Using COMPCERT 16/24

Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Understanding the formal correctness of COMPCERT

Formally, correctness of compiled code is ensured modulo

e correctness of C formal semantics in CoQ

e correctness of assembly formal semantics in CoQ

e absence of undefined behavior in the source program
Formal semantics =~ relation between “programs” and “behaviors”
i.e. a (possibly non-deterministic) interpretation of programs

for C : formalization of ISO C99 standard
for assembly : formalization/abstraction of ISA

Source program assumed to be without undefined behavior

int x, t[10], y;

if C...0) Ao
t[10]=1; // undefined behavior: out of bounds
// the compiler could write in x or vy,

// or prune the branch as dead-code,

Using COMPCERT 17/24

[ntroduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Informal view of COMPCERT formal correctness
Observable Value = int or float or address of global variable

Trace = a sequence of external function calls (or volatile accesses)
each of the form “f(vi,...,v,) — v" where f is name

Behavior = one of the four possible cases (of an execution) :
an infinite trace (of a diverging execution)
a finite trace followed by an infinite “silent” loop
a finite trace followed by an integer exit code (terminating case)
a finite trace followed by an error (UNDEFINED-BEHAVIOR)

Semantics = maps each program to a set of behaviors.
Correctness of the compiler

For any source program S,

if S has no UNDEFINED-BEHAVIOR,

and if the compiler returns some assembly program C,
then any behavior of C is also a behavior of S.

NB : under these conditions, C has no UNDEFINED-BEHAVIOR.

Using COMPCERT 18/24
S. Boulmé — March 2020

Introduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Trust in ELF binaries produced with COMPCERT

Trust in binaries requires additional verifications, at least :
> absence of undefined behavior in C code (e.g. with ASTREE)
> correctness of assembling/linking (e.g. with VALEX)

Verification

MTU &

Coding
Rules

Validation
Report

Compliance
Report

Runtime Error

Validation |, Analysis .| Validation
RuleChecker [¢ A tz" - Valex
- \\\ / stree (.json) Files {
Preprocessing Compilation X Assgml?llng /
——| — ——| — ——| Linking —
gcc CompCert ce
(.c/.h) Files (i) Files (.s) Files g (.elf) File
Testsuite validation Formal verification Translation validation

Qualification of MTU development chain for Nuclear safety
from Kaster, Barrho et al @ERTS'18

Using COMPCERT 19/24

Introduction to the COMPCERT Certified Compiler

Contents

Overview of COMPCERT Implementation

Overview of CoMPCERT Implementation 20/24

Introduction to the COMPCERT Certified Compiler

CoMPCERT's model of Intermediate Representations

Definition The transition semantics (of a program) is defined — on
a given type of states — by :

e a subset of initial states (i.e. at “main” entry-point);

e a subset of final states (i.e. at “returns” of "main");

e a step relation written S — S’

with t being either one observable event or € (i.e. “silent” step).

Behavior = trace produced by a maximal sequence of steps from
an initial state

4 kind of behaviors recovered by :
e infinite sequence with a finite or infinite trace
e finite sequence ended on a final state
o finite sequence ended on a non-final state (stuck)
= UNDEFINED-BEHAVIOR

Overview of COMPCERT Implementation

S. Boulmé — March 2020

21
S. Boulmé — March 2020

24

[ntroduction to the COMPCERT Certified Compiler S. Boulmé — March 2020

Certifying compilation passes in COMPCERT

Theorem : correctness of forward simulations
The correctness of a pass between a source semantics on S;
to a deterministic target semantics on Sy,
can be proved by a simulation relation $; ~ S, that :
e is established on initial states
e preserves final states
e and execution steps with :

f;l 152 f;l f;2
t ti+ or €| 2 with S < |Si]
A s} sl

NB : condition |Sj| < |S1| ensures preservation of infinite silent loops.

Overview of COMPCERT Implementation 22/24
S. Boulmé — March 2020

Introduction to the COMPCERT Certified Compiler

Untrusted Oracles in COMPCERT

Principle : delegate computations to efficient OCAML functions
without having to prove them!
= only a checker of the result is verified

i.e. verified defensive programming

Example of register allocation — a NP-complete problem
(related to a graph-coloring problem)

e finding a correct and efficient allocation is difficult

e verifying the correctness of an allocation is easy

= only “allocation checking” is verified in CoQ

Benefits of untrusted oracles
simplicity + efficiency + modularity

Overview of COMPCERT Implementation

23/24

Introduction to the COMPCERT Certified Compiler

Modular design of COMPCERT in COQ

Components independent/parametrized /specific w.r.t. the target

type elimination
loop simplification

side-effects apart

. stack allocation
from expressions

.| e of variabl
ComPCERT C Clight C#minor Of varables | I Cminor
instruction
linearization register CFG selection
f CFG llocati tructi
@ o [T]« 2llocation r=mm construction re—r ~
U
layout of branch tunneling CFG optimizations
stackframes
assembly

code generation

Demo on a mini example for x86-64 target at this link :
http://www-verimag.imag.fr/~boulme/IntroCompCert/DemoCompCert/

Overview of CoMPCERT Implementation 24/24

